Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Ll i

i

APPLESOFT BASIC
Extended Precision Floating Point
BASIC Language
Reference Manual

[Cassette - RAM Version]

AUTHOR
Apple Computer Inc.

DOCUMENT DATES OF RECORD
November 1977

(This page is not part of the original document)

| Distributed under the Creative Commons License on page 4 Page 0001 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

INTRODUCTION

What is this manual?

The APPLESOFT BASIC Extended Precision Floating Point BASIC Language
Reference Manual describes Apple Computer, Inc.'s version of the BASIC language
for use by its Apple II computer series.

This manual contains detailed information about this computer language for use by
Apple II computer programmers.

Facts about this manual

Author:
Apple Computer Inc
Document dates of record:
November 1977
Owner:

Organization: DigiBarn Computer Museum (www.digibarn.com)
Curator: Bruce Damer (http://www.damer.com/)

This digital rendition of this document is available for non-commercial, educational
and research purposes with the requirement to provide attribution and share-alike
under the Creative Commons license provided on page 4.

All other uses require the agreement of the DigiBarn Computer Museum (contact
through www.digibarn.com).

(This page is not part of the original document)

| Distributed under the Creative Commons License on page 4

Page 0002 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

PROPERTY STATEMENT

This document is the property of the DigiBarn Computer Museum which is offering it
under the following Creative Commons License found on page 4.

Under the terms of this license you must credit the DigiBarn Computer Museum and
Apple Computer, Inc. if whole or part of this document is used for non-commerical,
educational or research purposes. All other uses require the agreement of the
DigiBarn Computer Museum (contact through www.digibarn.com).

(This page is not part of the original document)

| Distributed under the Creative Commons License on page 4

Page 0003 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

ommons

M O N S D)

@creative

Attribution - Non Commercial - No Derivative Works 2.5
You are free:
* to copy, distribute, display, and perform the work

Under the following conditions:

Attribution.
You must attribute the work in the manner specified by the author

or licensor.

Noncommercial.
You may not use this work for commercial purposes.

No Derivative Works.
You may not alter, transform, or build upon this work.

*

For any reuse or distribution, you must make clear to others the license
terms of this work.

* Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code.

(This page is not part of the original document)

| Distributed under the Creative Commons License on page 4 Page 0004 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Disclaimer

The Commons Deed is not a license. It is simply a handy reference for
understanding the Legal Code (the full license) — it is a human-readable expression
of some of its key terms. Think of it as the user-friendly interface to the Legal Code
beneath. This Deed itself has no legal value, and its contents do not appear in the
actual license.

Creative Commons is not a law firm and does not provide legal services.

Distributing of, displaying of, or linking to this Commons Deed does not create an
attorney-client relationship.

(This page is not part of the original document)

| Distributed under the Creative Commons License on page 4 Page 0005 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Casselfle ~- RAM version

APPLESQOFT

EXTENDED PRECISION FLOATING POINT
BASIC LANGUAGE

REFERENCE MANUAL

NOVEMBER, 1977

Copyright, 1977, Apple Computer Inc.
Copyright, 1977, Microsoft Co.

| Distributed under the Creative Commons License on page 4

Page 0006 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

II.

APPLESOFT
Table of Contents

Introduction.....coiviiiiiiinniia.s,
Getting Started.....cvvveviniinnnnnnn.
A. Direct Commands..........coovuunn,
B. Indirect Commands.................
C. Number Format.........covvvevunnnn
D. Color Graphics Example............
E. Print Format.......covvvieiinnan,
F Variable NameS......ccovivvviennnn.
G Assigning Variable Values.........
H. 1 I 1
I Another Color Example.............
J 0 S O
K Matrices.....civiiviiiiiiennn...
L GOSUB...RETURN.....ccvvvvivrunnn.
M. READ...DATA...RESTORE.............
N. Real, Integer and String Variables
0. B T 1N
P. Color GraphicS..veeeeeeeinnnennn.

| Distributed under the Creative Commons License on page 4

Page 0007 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

IIT.

Iv.

APPLESOFT
Table of Contents
Continued

Reference Material
A. 011 1 T
B. Arithmetic Operators.....coviiiiiinnnnnnnnnns
C. Logical and Relational Operators..............
D. Rules for Evaluating Expressions..............
E. Statements. .. oo iiiiiiiiiiiiiiiiiiiii i
F. Intrinsic Functions.......covvvivivieiiaen.,
G. SEriINgS .ttt iirieieeeneeeneeesasasanannanaans
H. String FUNCEIONS . it eiiireeennnnecnenanns
I. Special Characters....cieeeereeeeesecsoanaannss
J. Special Controls and Features......cceveenenns
APPENATCTES ettt it iieeieeeeeerreeansennnoannnns
A. Getting APPLESOFT BASIC UP..vvveenreenennnnnn.
B. Program Editing.....ccvieiiienneainrnnnncnnnns
C. Error MessagesS...veeeriiiiineneriennecneenenss
D. Space HintsS. . veeeiveineiriinrenaeeosansoncans
E. Speeding Up Your Program.......cceeevevncaanns
F. Derived FunctionS.....ccvveiiiieiiiiineiennnn
G. Converting BASIC Programs not written

for APPLESOFT . ittt ittt iiiieneennnn
H. ASCII Character CodeS....c.cveeeenennennneeennns
I. Memory Map....vvueeeveneeneeneecannecescananns
J. Literature References......ocvviviiniennnnn,

ii

| Distributed under the Creative Commons License on page 4

Page 0008 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Introduction

APPLESOFT is a powerful, floating point BASIC written expressly
for the Apple II computer by Microsoft Inc.

This BASIC is intended for use in business, science and
educationally oriented applications which require extensive manip-
ulation of decimal numbers.

This manual provides the Apple Il user with a complete des-
crigtion of all APPLESOFT commands with examples of how they are
used.

It is assumed that the user already has at least a minimal
working knowledge of the BASIC language.

Getting Started

This section is not intended to be a detailed course in BASIC
programming. It will, however, serve as an excellent introduction
for those of you unfamiliar with the language.

The text here will introduce the primary concepts and uses of
BASIC enough to get you started writing programs. For further
reading suggestions, see AppendixI.

If your Apple II does not have Floating Point BASIC loaded and
running, follow the procedures in Appendice A.

We recommend that you try each example in this section as it is
presented. This will enhance your "feel" for BASIC and how it is used.

Once your TV has displayed a " 7] " prompt character, you are
ready to use APPLESOFT/BASIC.

NOTE: A1l commands to APPLESOFT BASIC should end with

a carriage return (depressing the "RETURN" key). The
carriage return tells BASIC that you have finished typing
the command. If you make a typing error, type a back
arrow (+). Repeated use of " < " will eliminate
previous characters. Typing a "CTRL"-X will eliminate
the entire line that you are typing. See Appendix B for
more details on editing.

Direct Commands

Now, try typing in the following:

PRINT 10-4 (end with carriage return)
Apple II will immediately print:

6

| Distributed under the Creative Commons License on page 4 Page 0009 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

The print statement you typed in was executed as soon as you
hit the carriage return key. BASIC evaluated the formula after
the "PRINT" and then typed out its value, in this case 6.

Now try typing in this:
PRINT 1/2,3*10 ("*" means multiply, "/" means divide)

BASIC will print:
.500000032 3@

As you can see, BASIC can do division and multiplication as
well as subtraction but did not get 1 divided by 2 exactly right.
We will cover calculation errors and how to set number of decimal
places later on. Note how a " , " (comma) was used in the print
command to print two values instead of just one. The comma divides
the 40 character 1ine into 3 columns, each 14 characters wide. The
last two of the positions on the line are not used. The result is
a " , " causes BASIC to skip to the next 14 column field on the
terminal, where the value 30 was printed.

Indirect Commands

Commands such as the "PRINT" statements you have just typed
in are called Direct Commands. There is another type of command
called an Indirect Command. Every Indirect command begins with
a Line Number. A Line Number is an integer from 0 to 65529.

Try typing in the following lines:

10 PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a "Program". Instead
of executing indirect statements immediately, APPLE/SOFT BASIC saves
Indirect Commands in the Apple's memory. When you type in "RUN",
BASIC will execute the lowest numbered indirect statement first, then
the next highest, etc. for as many as were typed in.

Suppose we type in "RUN" now (remember to depress "RETURN" key
at the end of each line you type):

RUN

Apple will now display on your TV:
5
-1

In the example above, we typed in 1ine 10 first and line 20
second. However, it makes no difference in what order you type in
indirect statements. BASIC always puts them into correct numerical
order according to the Line Number.

| Distributed under the Creative Commons License on page 4 Page 0010 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

- If we want a listing of the complete program currently in memory,
we type in "LIST". Type this in:

LIST
BASIC will reply with

10 PRINT 2+3
20 PRINT 2-3

Sometimes it is desirable to delete a line of a program altogether.
This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carriage return.

Type in the following:

10
LIST

Apple will reply with:
20 PRINT 2-3
We have now deleted 1ine 10 from the program. There is no way
to get it back. To insert a new line 10, just type in 10 followed by
the statement we want BASIC to execute.

Type in the following:

10 PRINT 2*3
LIST

Apple will reply with

10 PRINT 2*3
20 PRINT 2-3

There is an easier way to replace line 10 than deleting it and
then inserting a new line. You can do this by just typing the new
line 10 and hitting the carriage return. BASIC throws away the old
Tine 10 and replaces it with the new one.

Type in the following:

10 PRINT 3-3
LIST

Apple will reply with:

10 PRINT 3-3
20 PRINT 2-3

3

| Distributed under the Creative Commons License on page 4 Page 0011 of 0083

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

ﬂumber Format

We will digress for a moment to explain the format of numbers in
APPLESOFT BASIC. Numbers are stored internally to over nine digits of
accuracy. When a number is printed, only nine digits are shown. Eyery
number may also have an exponent (a power of ten scaling factor).

The largest number that may be represented in APPLESOF; BASIC.
is 1.9*1038, while the smallest positive number is 1.p*1p-39,

When a number is printed, the following rules are used to determine
the exact format:

1) If the number is negative, a minus sign (-) is
printed. If the number is positive, a space is printed.

2) If the absolute value of the number is an integer
in the range @ to 999999999, it is printed as an integer.

3) If the absolute value of the number is greater than
or equal to .1 and less than or equal to 999999999, it is
printed in fixed point notation, with no exponent.

4) If the number does not fall under categories 2 or 3,
scientific notation is used.

Scientific notation is formatted as follows: SX-XXXXXXXXESTT
(each X being an integer P to 9)

The leading "S" is the sign of the number, a space

for a positive number and a " - " for a negative one.

One nonzero digit is printed before the decimal point.
This is followed by the decimal point and then the other
eight digits of the mantissa. An "E" is then printed
(for exponent), followed by the sign (S) of the exponent;
then the two digits (TT) of the exponent itself. Leading
zeroes are never printed; j.e. the digit before the
decimal is never zero. Also, trailing zeroes are never
printed. If there is only one digit to print after all
trailing zeroes are suppressed, no decimal point is
printed. The exponent sign will be " + " for positive
and " - " for negative. Two digits of the exponent are
always printed; that is zeroes are not suppressed in

the exponent field. The value of any number expressed
thus is the number to the left of the "E" times 1@ raised
to the power of the number to the right of the "E".

No matter what format is used, a space is always printed following
a number. BASIC checks to see if the entire number will fit on the current

Tine. If not, a carriage return/line feed is executed before printing the
number.

| Distributed under the Creative Commons License on page 4 Page 0012 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

It is not recommended that 1ines be numbered consecutively.
It may become necessary to insert a new line between two existing
lines. An increment of 1§ between Tine numbers is generally sufficient.
If you want to erase the complete program currently stored in
memory, type in " NEW “. If you are finished running one program and
are about to type in a new one, be sure to type in " NEW " first. This
should be done in order to prevent a mixture of the old and new programs.

Type in the following:
NEW
Apple will reply with:
B
Now type in:
LIST
BASIC will reply with:

B

Color Graphics Example

Now type in:
PLTG
This will black out the top twenty lines on your TV screen and
leave only four Tines of text at the bottom. Your Apple is now in
its "Color Graphics" mode.
Now type in:
PLTC 13

Apple Basic will only respond with a "J" and a flashing cursor
but internally you have selected a yellow color

Now type in:
PLTP 20, 20

Apple will respond by plotting a small yellow square in the
center of the screen.

Now type in:
PLTH 9, 30, 2

Distributed under the Creative Commons License on page 4 Page 0013 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Apple will draw a horizontal line from the left edge of the
screen to one-quarter of a screen width of the right and one-quarter
down from the top.

Now type in:

PLTC 6
To change to a new color and then type in:
PLTV 10, 39, 30

More about Color Graphics later. To get back to all text mode,
type in:

TEX

The characters on the screen is Apple’s attempt to display color
information as TEXT.

Often it is desirable to include text along with answers that are
printed out, in order to explain the meaning of the numbers.

Type in the following:
PRINT "ONE THIRD IS EQUAL TO", 1/3
BASIC will reply with:
ONE THIRD IS EQUAL TO .333333312
Print Format
As explained earlier, including a " , " in a print statement
causes it to space over to the next fourteen column field before the
value following the " ," is printed.
If we use a " ; " instead of a comma, the value next will be
printed immediately following the previous value.

NOTE: Numbers are always printed with at least one trailing space.
Any text to be printed is always to be enclosed in double quotes.

Try the following examples:

A) PRINT 1,2,3
1 2 3

B) PRINT 1;2;3
1 2 3
C) PRINT -1;2;-3
-1 2 -3

b

Page 0014 of 0083)

| Distributed under the Creative Commons License on page 4

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

The following are examples of various numbers and the output format
AppTe will use to nrint them:

NUMBER OUTPUT FORMAT
+1 1

-1 -1

6523 6523

-23.460 -23.46

1x1¢ 20 1E+20
-12.34567896x1¢ 19 -1.23456787E-06
1.23456789E -7 1.2345678E-10
1000000009 1E+09

999999999 999999999

1 .£99999992

A number input from the keyboard or a numeric constant used in a
BASIC program may have as many digits as desired, up to the maximum
length of a line (255 characters). However, only the first 1@ digits
are significant, and the tenth digit is rounded up.

PRINT 1.23456784912345678
1.23456785

The following is an example of a program that reads a value from
the keyboard and uses that value to calculate and print a result:

1g INPUT R

2@ PRINT 3.14159*R*R
RUN

? 10

314.1590@2

Here's what's happening. When BASIC encounters the "INPUT" statement,
it outputs a question mark (?) and then waits for you to type in a number.
When you do (in the above example 1@ was typed), execution continues with
the next statement in the program after the variable (R) has been set
(in this case to 1@¢). In the above example, line 20 would now be executed.
When the formula after the PRINT statement is evaluated, the value 10 is
substituted for the variable R each time R appears in the formula. Therefore,
the formula becomes 3.14159*1¢*1@, or 314.159.

If you haven't already guessed, what the program above actually does
is to calculate the area of a circle with the radius "R".

If we wanted to calculate the area of various circles, we could keep
re-running the program over each time for each successive circle. But,
there's an easier way to do it simply by adding another (1ine 3p¢) to the
program as follows:

30 GOTO 19
RUN

2?10
314.159002

7

| Distributed under the Creative Commons License on page 4

Page 0015 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

?3
28.27431
? 4.7

69.3977229
?

By putting a "GOTQ" statement on the end of our program, we have
caused it to go back to line 1@ after it prints each answer for the
successive circles. This could have gone on indefinitely, but we decided
to stop after calculating the area for three circles. This was accom-
glis?ed by typing a carriage return to the input statement (thus a blank

ine).

Variable Names

The letter "R" in the program we just ran was termed a "variable".
A variable name can be any alphabetic character and may be followed by
any alphanumeric character. Any alphanumeric characters after the first
two are ignored. An alphanumeric character is any letter (A-Z) or any
number (@-9).

Below are some examples of legal and illegal variable names:

LEGAL ILLEGAL

TP TO (variable names cannot be reserved
PSTG$ words)

COUNT RGOTO (variable names cannot contain
N1% reserved words)

The words used as BASIC statements are "reserved" for their specific
purpose. You cannot use these words as variable names or as part of any
variable name. For instance, "FEND" would be illegal because "END" is a
reserved word.

The following is a list of the reserved words in APPLESOFT BASIC:

ABS AND ASC ATN CHR$ CLEAR CONT COS DATA DEF

DIM END EXP FN FOR FRE GOSUB GOTO IF IN

INPUT INT LEFT$ LEN LET LIST LOAD LOG MID$ NEW

NEXT NOT ON .OR OUT PEEK .PLT PLTC PLTG PLTH PLTP

PLTV POKE POS PRINT READ REM RESTORE RETURN

RIGHTS RND RUN SAVE SGN SIN SPC SQR STEP STOP-

STR$ TAB TAN "TEX THEN TO USR VAL

-

| Distributed under the Creative Commons License on page 4

Page 0016 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

. Assigning Variable Values

Besides having values assigned to variables with an input statement,
you can also set the value of a variable with a LET or assignment state-
ment.

Try the following examples:
A=5

PRINT A,A*2
5 1d

LET Z=7 (can be used only if Option 2 was loaded.)

PRINT Z, Z-A
7 2

As can be seen from the examples, the "LET" is optional in an assign-
ment statement only if option 2 is loaded initially.

BASIC "remembers" the values that have been assigned to variables
using this type of statement. This “remembering" process uses space in
the Apple Il's memory to store the data.

The values of variables are thrown away and the space in memory
used to store them is released when one of four things occur:

1) A new line is typed into the program or an old
line is deleted

2) A CLEAR command is typed in
3) A RUN command is typed in
4) NEW is typed in

Another important fact is that if a variable is encountered in a
formula before it is assigned a value, it is automatically assigned the
value zero. Zero is then substituted as the value of the variable in
the particular formula. Try the example below:

PRINT Q,Q+2,Q*2
g 2 @

Another statement is the REM statement. REM is short for remark.
This statement is used to insert comments or notes into a program.
When BASIC encounters a REM statement the rest of the line is ignored.
This serves mainly as an aid for the programmer himself, and serves
no useful function as far as the operation of the program in solving a
particular problem. It is not available in Option 1.

IF...THEN

Suppose we wanted to write a program to check if a number is zero
or not. With the statements we've gone over so far this could not be
done. What is needed is a statement which can be used to conditionally
branch to another statement. The "IF-THEN" statement does just that.

9

Distributed under the Creative Commons License on page 4 Page 0017 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Try typing in the following program: (remember, type NEW first)

1p INPUT B
20 IF B=Q THEN 50
30 PRINT "NON-ZERQ"
49 GOTO 1p

50 PRINT "ZERO"

69 GOTO 19

When this program is typed into Apple II and run, it will ask for
a value for B. Type in any value you wish. The Apple will then come
to the "IF" statement. Between the "IF" and the "THEN" portion of the
statement there are two expressions separated by a relation.

A relation is one of the following six symbols:

RELATION MEANING
= EQUAL TO
> GREATER THAN :
< LESS THAN
<> NOT EQUAL TO

A

LESS THAN OR EQUAL TO
GREATER THAN OR EQUAL TO

4

The IF statement is either true or false, depending upon whether
the two expressions satisfy the relation or not. For example, in the
program we just did, if p was typed in for B the IF statement would be
true because@=g. In this case, since the number after the THEN is 50,
execution of the program would skip to line 5@. Thzrefore, "ZERO"
would be printed and then the program would jump back to line 1@ (because
of the GOTO statement in line 6@).

Suppose a 1 was typed in for B. Since 1=0 is false, the IF state-
ment would be false and the program would continue execution with the
next line. Therefore, "NON-ZERQ" would be printed and the GOTO in line
4@ would send the program back to line 1Q.

Now try the following program for comparing two numbers (remember
to type "NEW" first to delete your last program):

19 INPUT A,B

20 IF A<=B THEN 50

3@ PRINT "A IS LARGER"

49 GOTO 10

50 IF A<B THEN 80

6@ PRINT “THEY ARE THE SAME"
70 GOTO 1P

80 PRINT "B IS LARGER"

99 GOTO 1P

When this program is run, 1ine 1P will ask for two numbers to be entered
from the keyboard. At line 2p. if A is greater than B, A<=B will be false. This
will cause the next statement to be executed, printing "A" is LARGER" and then
Tine 49 sends the computer back to line 1@ to begin again.

10

| Distributed under the Creative Commons License on page 4 Page 0018 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

At Tine 2, if A has the same value as B, A<=B 1is true so we go to
line 5@. At line 59, since A has the same value as B, A<B is false;
therefore, we go to the following statement and print "THEY ARE THE SAME".
Then line 79 sends us back to the beginning again.

At line 2@, if A is smaller than B, A<=B is true so we go to line
50. At line 5@, A<B will be true so we then go to line 8p. "B IS LARGER"
is then printed and again we go back to the beginning.

Try running the last two programs several times. It may make it
easier to understand if you try writing your own program at this time
using the IF-THEN statement. Actually trying programs of your own is
the quickest and easiest way to understand how BASIC works. Remember,
to stop these programs just give a carriage return to the input state-
ment.

Another Color Example

Let's try another program. The one below uses another form of
"If...THEN" i.e. "IF" statement 1 is true "THEN" let statement 2 be
executed otherwise go the next 1ine number. After you type in the
program below, "LIST" it and make sure that you have typed it in correctly.
Now "RUN" it.

10 PLTG

20 NX=@:NY=P:X=0:Y=0:XV=2:YV
30 T9=39:TP=P:COLR=13:3=1:K=
4G NX=X+XV:NY=Y+YV

5@ IFNX>=T9 THEN NX=T9

6@ IFNX<=T@ THEN NX=TQ

78 IFNY>=T9 THEN NY=T9

8@ IFNY<=TP THEN NY=TQ

9% IFNX=T9 or NX=T@ THEN XV=XV

100 IFNY=T9 or NY-T@ THEN YV=YV

116 PLTC=COLR: PLTP NX,NY

12¢ PLTC=T@: PLTP X,Y

133 X=NX: Y=NY

149 I=I+J:IFI<K THEN 49

150 ° TEX

16@ PRINT "FINISHED" '

=1
250

As you have seen, Apple can do more than just use numbers. We'll return
to color graphics again after you have learned more about APPLESOFT BASIC.

FOR....NEXT

One advantage of computers is their ability to perform repetitive
tasks. Let's take a closer look and see how this works.

Suppose we want a table of square roots from 1 to 1@. The BASIC
function for square root is "SQR"; the form being SQR(X), X being the
number you wish the square root calculated from. We could write the
program as follows:

16 PRINT 1,SQR(1)

20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)

11

| Distributed under the Creative Commons License on page 4 Page 0019 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

4 PRINT 4,SQR(4)
53 PRINT 5,SQR(5)
60 PRINT 6,SQR(6)
70 PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT 19,SQR(19)

This program will do the job; however, it is terribly inefficient.
We can improve the program tremendously by using the IF statement just
introduced as follows:

1p N=1

20 PRINT N,SQR(N)
30 N=N+1

49 IF N<=19 THEN 20

When this program is run, its output will look exactly like that
of the 1P statement program above it. Let's look at how it works.

At Tine 1P we have a LET statement which sets the value of the
variable N at 1. At line 2P we print N and the square root of N using
jts current value. It thus becomes 2@ PRINT 1,SQR(1), and the result
of this calculation is printed out.

At line 3P we use what will appear at first to be a rather unusual
LET statement. Mathematically, the statement N=N+1 is nonsense. However,
the important thing to remember is that in a LET statement, the symbol
" = " does not signify equality. In this case " =" means to be
replaced with". A1l the statement does is to take the current value of
N and add 1 to it. Thus, after the first time through line 30, N becomes

2. At line 4P, since N now equals 2, N<=1p is true so the THEN portion
branches us back to line 2@, with N now at a value of 2.

The overall result is that lines 2P through 4P are repeated, each
time adding 1 to the value of N. When N finally equals 10 at line 20,
the next line will increment it to 11. This results in a false
statement at line 4P, and since there are no further statements in the
program, it stops.

This technique is referred to as "looping” or "iteration". Since
it is used quite extensively in programming, there are special BASIC
statements for using it. We can show these with the following program.

10 FOR N=1 TO 1P
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the same
as the previous two programs.

At 1ine 10, N is set to equal 1. Line 20 causes the value of N
and the square root of N to be printed. At line 30 we see a new type
of statement. The "NEXT N" statement causes one to be added to N, and
then if N<=10 we go back to the statement following the "FOR" is
exactly the same as the variable after the "NEXT". There is nothing
special about the N in this case. Any variable could be used, as long
as they are the same in both the "FOR" and the "NEXT" statements. For
instance, "Z1" could be substituted everywhere there is an "N" in the
above program and it would function exactly the same.

12

| Distributed under the Creative Commons License on page 4 Page 0020 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Suppose we wanted to print a table of square roots from 10 to 20,
only counting by two's. The following program would perform this task:

10 N=10

29 PRINT N,SQR(N)
30 N=N+2

40 IF N<=20 THEN 20

Note the similar structure between this program and the one listed
on page 12 for printing square roots for the numbers 1 to 1@. This
program can also be written using the "FOR" loop just introduced.

17 FOR N=10 TO 20 STEP 2
2G PRINT N,SQR(N)
30 NEXT N

Notice that the major difference between this program and the
previous one using "FOR" Toops is the addition of the STEP

This tells BASIC to add 2 to N each time, instead of 1 as in the
previous program. If no "STEP" is given in a "FOR" statement, BASIC
assumes that one is to be added each time. The "STEP" can be followed
by any expression.

Suppose we wanted to count backwards from 10 to 1. A program for
doing this would be as follows:

19 1=1p
2§ PRINT I

39 I=I-1

4¢ IF I>=1 THEN 2¢

Notice that we are now checking to see that I is greater than or
equal to the final value. The reason is that we are now counting by
a negative number. In the previous examples it was the opposite, so we
were checking for a variable less than or equal to the final value.

The "STEP" statement previously shown can also be used with negative
numbers to accomplish this same purpose. This can be done using the same
format as in the other program, as follows:

10 FOR I=1¢ TO 1 STEP -1
2@ PRINT I
30 NEXT I

"FOR" Toops can also be "nested". An example of this procedure
follows:

19 FOR I=1TO
20 FOR J=1 TO
3@ PRINT I,J

40 NEXT J
50 NEXT I

5
3

13

| Distributed under the Creative Commons License on page 4

Page 0021 of 0083

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

the J-loop is inside of the I-loop.
run it and see what happens.

10
20
30
4g
50

knowledge of the J-loop is lost.

Matrices

of numbers. BASIC allows this to be
A matrix is a table of numbers.

could use both in the same program.

follow "A" by this subscript.
the matrix "A".

NOTE:
one-dimensional matrices only.

In this case, we have reserved space
@ to 15.

BASIC reserves space for 11 elements

to sort a list of 8 numbers with you

DIM A(8)

FOR 1=1T0 8
INPUT A(I)

NEXT I

F=0

FOR I=1 TO 7

IF A(I)<=A(I+1)
T=A(1)
A(1)=A(1+1)
A(1+1)=T

14

Notice that the "NEXT J" comes before the "NEXT I".

matrix name, is any legal variable name, "A" for example.
name "A" is distinct and separate from the simple variable "A", and you

To select an element of the table, we subscript "A":
select the I'th element, we enclose I in parenthesis "(I)" and then
Therefore, "A(I)" is the I'th element in

This is because
The following program is incorrect;

1t does not work because when the "NEXT I" is encountered, all

It is often convenient to be able to select any element in a table

done through the use of matrices.
The name of this table, called the
The matrix

that is,to

In this section of fhe manual we will be concerned with

(See Reference Material)

“A(1)" is only one element of matrix A, and BASIC must be told how
much space to allocate for the entire matrix.
This is done with a "DIM" statement, using the format "DIM A(15)".

for the matrix index "I" to go from

Matrix subscripts always start at @; therefore, in the above
example, we have allowed for 16 numbers in matrix A.
If "A(I)" is used in a program before it has been dimensioned,

(b through 1D).

As an example of how matrices are used, try the following program

picking the numbers to be sorted.

THEN 149

| Distributed under the Creative Commons License on page 4

Page 0022 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

139 F=1

140 NEXT I

159 IF F=1 THEN 79
169 FOR I=1 TO 8
179 PRINT A(I)

180 NEXT I

When Tine 1@ is executed, BASIC sets aside space for 9 numeric
values, A(@) through A(8). LInes 20 through 5@ get the unsorted list
from the user. The sorting itself is done by going through the list
of numbers and upon finding any two that are not in order, we switch
them. "F" is used to indicate if any switches were done. If any were
done, line 15@ tells BASIC to go back and check some more.

If we did not switch any numbers, or after they are all in order,
lines 16@ through 18@ will print out the sorted list. Note that a
subscript can be any expression.

GOSUB. .. .RETURN

Another useful pair of statements are "GOSUB" and "RETURN". If
you have a program that performs the same action in several different
places, you could duplicate the same statements for the action in each
place within the program.

The "GOSUB"-"RETURN" statements can be used to avoid this dupli-
cation. When a "GOSUB" is encountered, BASIC branches to the line
whose number follows the "GOSUB". However, BASIC remembers where it
was in the program before it branched. When the "RETURN" statement
is encountered, BASIC goes back to the first statement following the
last "GOSUB" that was executed. Observe the following program.

19 PRINT "WHAT IS THE NUMBER";

39 GOSuB 1¢9

49 T=N

50 PRINT "WHAT IS THE SECOND NUMBER";

70 GOSUB 19@

80 PRINT "THE SUM OF THE TWO NUMBERS IS",T+N
9¢ STOP

109 INPUT N

119 IF N = INT(N) THEN 149

12@¢ PRINT "SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN."
139 GOTO 199

149 RETURN

What this program does is to ask for two numbers which must be
integers, and then prints the sum of the two. The subroutine in this
program is lines 10@ to 13@. The subroutine asks for a number, and if
it is not an integer, asks for a number again. It will continue to ask
until an integer value is typed in.

The main program prints "WHAT IS THE NUMBER", and then calls the
subroutine to get the value of the number into N. When the subroutine
returns (to line 4@), the value input is saved in the variable T. This
is done so that when the subroutine is called a second time, the value
of the first number will not be lost.

15

| Distributed under the Creative Commons License on page 4

Page 0023 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

"WHAT IS THE SECOND NUMBER" is then printed, and the second value
is entered when the subroutine is again called.

When the subroutine returns the second time, "THE SUM OF THE TWO
NUMBERS IS" is printed, followed by the value of their sum.
the value of the first number that was entered and N contains the value

of the second number.

The next statement in the program is a "STOP" statement.
causes the program to stop execution at line 9@.
ment was not included in the program, we would "fall into" the sub-
This is undesirable because we would be asked to

If we did, the subroutine would try to return;
and since there was no "GOSUB" which called the subroutine, an error
Each "GOSUB" executed in a program should have a matching
"RETURN" executed later, and the opposite applies, i.e. a "RETURN"
should be encountered only if it is part of a subroutine which has been

routine at line 19Q.
input another number.

would occur.

called by a "GOSUB".

Either "STOP" or "END" can be used to separate a program from its
"STOP" will print a message saying at what line the "STOP"
was encountered, "END" will return to command mode as indicated by a

subroutines.

n]u

and a flashing cursor.

READ...DATA ...RESTORE

Suppose you had to enter numbers to your program that didn't change
each time the program was run, but you would like it to be easy to change
BASIC contains special statements for this purpose,
called the "READ" and "DATA" statements.

them if necessary.
Consider the following program:

INPUT G

READ D

50 IF D<>G THEN 3¢

END

90 PRINT "BAD GUESS,

95 RESTORE
GOTO 1@

This is what happens when this program is run.
statement is encountered, the effect is the same as an INPUT statement.
But, instead of getting a number from the terminal, a number is read

from the "DATA" statements.

The first time a number is needed for a READ, the first number in

the first DATA statement is returned.

the second number in the first DATA statement is returned.
entire contents of the first DATA statement have been read in this
manner, the second DATA statement will then be used.
read sequentially in this manner, and there may be any number of DATA

statements in your program.

16

PRINT "GUESS A NUMBER";

IF D=-999999 THEN 99
PRINT "YOU ARE CORRECT"

DATA 1,393,-39,28,391,-8,0,3.14,90
DATA 89,5,10,15,-34,-999999

T contains

This
If the "STOP state-

TRY AGAIN."

When the "READ"

The second time one is needed,
When the

DATA is always

| Distributed under the Creative Commons License on page 4

Page 0024 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

The purpose of this program is to play a 1ittle game in which you
try to guess one of the numbers contained in the DATA statements. For
each guess that is typed in, we read through all of the numbers in the
DATA statements until we find one that matches the guess.

If more values are read than there are numbers in the DATA state-
ment, an "OUT OF DATA" error occurs. That is why in line 40 we check
to see if -999999 was read. This is not one of the numbers to be matched,
but is used as a flag to indicate that all of the data (possible correct
guesses) has been read. Therefore, if -999999 was read, we know that the
guess given was incorrect.

Before going back to line 1ff for another guess, we need to make the
READ's begin with the first piece of data again. This is the function of
the "RESTORE". After the RESTORE is encountered, the next piece of data
read will be the first piece in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only
READ statements make use of the DATA statements in a program, and any
other time they are encountered during program execution they will be
ignored.

Real, Integer, and String Variabléé

There are three different values used in APPLESOFT BASIC. So far
we have just used one type - real precision. Numbers in this mode are
displayed with up to nine decimal digits of accuracy and may range up
to 1P to the 38th power. Apple converts your numbers from decimal to
binary for its internal use and then back to decimal when you ask it to
"PRINT" the answer. Internal math routines such as square root, divide,
exponent do not always give the exact number that you expected.

For example:

PRINT SQR(4) gives 1.99999982 not 2
PRINT 1/2 gives .500000032 not .5
PRINT 1973 gives 999.998962 not 1000

The number of places to the fight of the decimal point may be set
by rounding off the value prior to printing it. The general formula is:

X= INT(X*1@ D+.5)/INT(1@"D+.5)

Where D is the number of decimal places, a faster way to set the number
of decimal places is to use the formula:

X= INT(X*D+.5)/D

Where D=1@ is one place; D=10@, 2 places; D=109@, 3 places, etc.
The above works for X>=1 and X<999999999. A routine to limit the
number of digits after the decimal point is given in the section
on string functions.

17

| Distributed under the Creative Commons License on page 4 Page 0025 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

The table below summarizes the three types of values used in
APPLESOFT BASIC programming:

DESCRIPTION SYMBOL to Append EXAMPLE
to Variable Name

Strings (@ to 255 characters) $ A$
ALPHAS

Integers (must be in range of % B%

-32767 to +32767) C1%

Real Precision (exponent:-38 to none . C

+38, with 9 decimal digits) BOY

An integer or string variable must be followed by a "%" or "$" at
each use of that variable. For example X, X%, and X$ are each different
variables.

Integer variables are not allowed in "FOR" or "DEF" statements. The
greatest advantage of integer variables is their use in matrix operations
wherever possible to save storage space and provide fastest execution.

A1l arithmetic operations are done in floating point. No matter what
the operands to +,-,*,/, and A are, they will be converted to floating
point. The functions SIN, COS, ATN, TAN, SQR, LOG, EXP and RND also
convert their arguments to floating point and give the result as such.

The operators AND, OR, NOT force both operands to be integers between
-32767 and +32767 before the operation occurs.

When a number is converted to an integer, it is truncated (rounded
down). For example:

[%=.999 A%= -.01
PRINT I% PRINT A%
p -1

It will perform as if INT function was applied. No automatic con-
version is done between strings and numbers.

Strings

A 1ist of characters is referred to as a "String". BILL, APPLE,
and THIS IS A TEST are all strings. Like numberic variables, string
variables can be assigned specific values. String variables are disting-
uished from numeric variables by a "$" after the variable name.

For example, try the following:

A$= "GOOD MORNING"

PRINT A$
GOOD MORNING

In this example, we set the string variable A$ to the string value
"GOOD MORNING". Note that we also enclosed the character string to be
assigned to A$ in quotes.

18

| Distributed under the Creative Commons License on page 4 Page 0026 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Now that we have set A$ to a string value, we can find out what the
Tength of this value is (the number of characters it contains). We do
this as follows:

PRINT LEN(AS$),LEN("YES")
12 3

The "LEN" function returns an integer equal to the number of
characters in a string.

The number of characters in a string expression may range from 0 to
255. A string which contains 0 characters is called the "NULL" string.
Before a string variable is set to a value in the program, it is initialized
to the null string. Printing a null string on the terminal will cause
no characters to be printed, and the cursor will not be advanced to the
next column. Try the following:

PRINT LEN(Q$):Q$;3
0 3

Another way to create the null string is: Q$=" "

Setting a string variable to the null string can be used to free up
the string space used by a non-null string variable.

Often it is desirable to access part of a string and manipulate
it. Now that we have set A% to "GOOD MORNING", we might want to print
out only the first four characters of A$. We would do so like this:

PRINT LEFT$(A$,4)
GOOD

"LEFT$" is a string function which returns a string composed of the
lTeftmost N characters of its string argument. Here's another example:

FOR N=1 TO LEN(A$):PRINT LEFT$(A$,N):NEXT N
G

GO

GO0

GOQD

GOOD

GOOD M

GOOD MO
GOOD MOR
GOOD MORN
GOOD MORNI
GOOD MORNIN
GOOD MORNING

Since A$ has 12 characters, this loop will be executed with N=1,2,
3...,11,12. The first time through only the first character will be
printed, the second time the first two characters will be printed, etc.

There is another string function called "RIGHT$" which returns the
right N characters from a string expression. Try substituting "RIGHTS"
for "LEFT$" in the previous example and see what happens.

19

| Distributed under the Creative Commons License on page 4 Page 0027 of 0083

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

~ There is also a string function which allows us to take characters
from the middle of a string. Try the following:

FOR N=1 TO LEN(A$):PRINT MID$(A$,N):NEXT N

"MID$" returns a string starting at the Nth position of A$ to the
end (last character) of A§. The first position of the string is position
1 and the last possible position of a string is position 255.

Very often it is desirable to extract only the Nth character from
a string. This can be done by calling MID$ with three arquments. The
third argument specifies the number of characters to return.

For example:

FOR N=1 TO LEN(A$):PRINT MID$(A$,N,1),MID$(A$,N,2) :NEXT N
GO

00
0D

MH—Z22X0D0X DOoOOMm
=
o

See the Reference Material for more details on the workings of
"LEFT$", "RIGHT$" AND "MIDS$".

Strings may also be concatenated (put or joined together) through
the use of the "+" operator. Try the following:

B$=A$+” "'*'"BILL“

PRINT B$
GOOD MORNING BILL

Concatenation is especially usefui if you wish to take a string

apart and then put it back together with slight modifications. For
instance:

C$=RIGHT$(BS$,3)+"-"+LEFT$(BS,4)+"-"+MID$(BS$,6,7)

PRINT C$
BILL-GOOD-MORNING

Sometimes it is desirable to convert a number to its string repre-
sentation and vice-versa. "VAL" AND "STR$" perform these functions.
Try the following:
STRING$="567.8"

PRINT VAL(STRINGS$)
567.8

20

| Distributed under the Creative Commons License on page 4 Page 0028 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STRING$=STR$(3.1415)

PRINT STRINGS, LEFT$(STRINGS,5)
3.1415 3.14

"STR$" can be used to perform formatted input and/or output on numbers.
You can convert a number to a string and then use LEFT$, RIGHT$, MID$ AND
concatenation to reformat the number as desired.

The following short program demonstrates how string functions may be
used to format output of numeric variabies:

19@ INPUT "ENTER ANY NUMBER",X
11¢ INPUT "ENTER NO. OF DIGITS TO RIGHT OF
DECIMAL PT."3;D
120 GOSUB 1009
13@ PRINT '*xv
149 GO TO 199 +1
1000 X$=STR$(X):FOR I = 1 TO LEN (X$) ":
IF MID$ (X$,I,1,) < > "E" THEN NEXT
1919 FOR J=1 TO I-1: IF MID$ (X$,d,1)< > "."
- THEN NEXT
1020 PRINT LEFT § (X$, -(J+D)*(J+D<=I-1)-
(1-1)*(J+D>I-1))+MID$(X$,I);:RETURN

The above program uses a subroutine starting at line 1008 to print out
a predefined variable X with D digits after the decimal point. Answer is
truncated; not rounded off. The variables X%, I and J are used in the
subroutine as local variables. Line 1000 converts variable X to string
variable X$ and scans the string to see if an "E" is present. [is set
to the position of the "E" or to LEN(X$)+1 if no "E" is there. Line
1819 searches the string for a decimal point and sets J equal to its
position. Line 1020 prints out variable X as a string with no trailing
spaces and no carriage return. The "LEFT$" function prints out significant
digits and the "MID$" function prints out exponent if it was there. The
relational expressions inside the "LEFT$" check to see if at least D digits
to the right of the decimal point are available to be printed.

"STR$" can also be used to conveniently find out how many print
columns a number will take. For example:

PRINT LEN(STR$(3.157)
6
If you have an application where a user is typing in a question such
as "WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1

FEET?" you can use "VAL" to extract the numeric values 5.36 and 5.1 from
the question. For further functions "CHR$" and "ASC" see Appendix H

21

| Distributed under the Creative Commons License on page 4

Page 0029 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

The following program sorts a list of string data and prints out
the sorted list. This program is very similar to the one given earlier

for sorting a numeric list.

1¢9 DI
119 FO
120 F=
130 IF
140 T$=
15@ AS(
168 A$(
176 F=1
18¢ I+1: IF I 15 GOTO 1340

19¢ IF F THEN 12¢

2dd FOR I=1 TO 15:PRINT A$(I):NEXT I

22@ DATA APPLE,DOG,CAT,RANDOM,COMPUTER,BASIC

230@ DATA MONDAY "***ANSWER***" "FOQ:

249 DATA COMPUTER FOO,ELP, MILWAUKEE ,SEATTLE,ALBUQUERQUE

M AS(1

R I= TO 15:READ A$(I):NEXT I:
0:1=

AS(=A$(I+1) THEN 18d
A$(1+1)

I+1)=A$(1)

I)=

22

| Distributed under the Creative Commons License on page 4

Page 0030 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Color Graphics

In two previous examples on pages 5 and 11, Apple II has
demonstrated its ability to do color graphics as well
as text. In color graphics mode, Apple displays an array of 1609
small squares in 16 colors on a 40 by 4P grid plus provides 4 lines
of text at the bottom of the screen. The horizontal or X axis is
standard with @ the left most position and 39, the right most. The
vertical or Y axis is non-standard in that it is inverted; i.e., @
is the top most position and 39, the bottom most.

If Apple is instructed to plot color graphics outside of
e P to 39 range, it will do so. This may clobber your program or
the APPLESOFT complier.

Type in the following demonstration program; remember to type "NEW"

first.
14 PLTOG
28 Z=USR{-938>
38 PRIHT"INITIALIZE COLOR GRAFPHICS: SE

"

£
[un]
"
[
e
l",:|

T
i

TO"
48 PRINT"BLACK. SET WINDOW TO 4 LINES
AT BOTTOM™ ~ ~ 7

8 PRIMTYCLEAR ALL TEXRT®

&8 GOSUBiggg

78 PLTC 2:PLTF &.,8

34 2=85T:—935}:‘PLH;"FGLZF=ELHE; FLOT
AT @,8"

38 GQ4SUE18S8S

188 FLTC L1:PLTPR 22.8

118 Z=USR{-336 s PRINT COLOR=HRGEHTA: P
LGT AT 3%.8°

ic8 GOSuUBioasg

i368 PLTC 1Z:PLTP @,33

148 Z=USR(-356 >:PRIMT"COLOR=GREEH; FLO
T AT 8,33"

138 GOSuB1338

1548 PLTC S:PLTP39,39

178 Z=USR{-3358:PRIMT"COLOR=0ORAHGE; PL
07 AT 39,32¢

158 GosSUBiGEs

158 PLTC 12:PLTPLZ2.,13

288 Z=USRE{-336:PRINT"COLOR=YELLOW; PL
GT RT 13,13"

2i8 GOSUB1ggs

23

| Distributed under the Creative Commons License on page 4 Page 0031 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

&0

[Y]
" “‘_:“‘]
RO Y |

OUR OWH POIHT

N

i 3
MOCm Wa o mli
MEER RBE&Y MU

Moo
i

fa.
[\
o
A

=

EI o L O 1 I LI O (N IRY s R (KR E I g

(¥

INPUT"EHTER K,V"3X,Y
IFX>39 OR X<8 THEH 238
IF ° OR ¥>3% THEW 238
PLTC Z:PLTP X.¥
PRIHT"HIT RETURN TO STOP*:G0T02S6
88 PRINT"#+xHIT AHY KEY TO CONTIHUE=
GETA$:RETURH | ‘

un)

L

I IS I SR
o] 5
™

[lﬁl

i

px

L

wa £
"

:*‘:*

After you have typed it in, "LIST" it and check for typing errors.
You may want to "SAVE" it on cassette tape for future use. Now
"RUN" the program.

The program uses four new commands:

PLTG

PLTC I

PLTP X, Y

Z = USR (-936)

The command "PLTG" tells Apple to switch to its color graphics mode.
It also clears the 4¢ by 4@ plotting area to black, sets the text
output to be limited to a window at the bottom of the screen of 4
1ines of 4@ characters each and sets next color to be plotted to
black.

"PLTC I" command sets the next color to be plotted to the value of
expression I. Color remains set until changed by a new "PLTC" command.
For example, the color plotted in line 28p remains the same no matter
how many points are plotted. The value of expression I must be in
the range of @ to 15 or an error may occur.

Change the program by re-typing in lines 25@ and 28@ as follows:
25@ INPUT “ENTER X, Y, COLOR"; X, Y, Z
28@ PLTC C: PLTP X, Y

Now "RUN" the program and you will be able to select your own
colors as well as points. We will demonstrate Apple's color range
in a moment.

"PLTP X, Y" command plots a small square of color defined
by the last "PLTC" command at the position specified by expressions
X and Y. Remember, X and Y must each evaluate to a number in the
range of § to 39.

24

| Distributed under the Creative Commons License on page 4 Page 0032 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

"Z = USR(-936)" is a useful function used to clear the text area
and set the cursor to the top left of the currently defined text
window so that the next text output will start at that position. In
color graphics mode, this would be the beginning of line 20 since
lines @ through 19 are now being used for color graphics plotting
area.

Note: To get from color graphics back to all
text mode, type "TEX" and depress "RETURN" key
if you have the "]}" prompt character.

Type in the following program and "RUN" it to display Apple's
range of colors ("NEW" first).

18 PLTG:Z=USR{-9383
26 FOR I=8T031
36 PLTC I-2
43 PLTVG,33,1
S@ HEXT)
£0 FORI=GTOS STEPS:PRIHTTABC I[%23;I1;:HE
=T '
79 FORI=18TO14STEPS:PRIMTTABRS [#2—13:1;
: HEXRT
35 PRINT:FORI=1TOSSTEPS:FRINTTABR: I#23;
I;:HEXT
39 FORI=11TOI1SSTEPS:PRIHTTAB. I+#8-1331;

tHEXT:PRINT
198 PRINT"STANDARD APPLE COLOR BARSY;

Color bars are displayed at double their normal width. The
left most bar is black as set by PLTC @; the right most, white,
is set by PLTC 15. Depending on the tint setting on your TV, the
second bar as set by PLTC1 will be magenta (reddish-purple) and the
third will be blue. Adjust your TV tint control for these colors.

In the last program a new command "PLTV Y1, Y2, X" was used.
This command plots a vertical line from the Y coordinate specified
by expression Y1 to expression Y2 at the horizontal position
specified by expression X. Y1, Y2 and X must evaluate to values in
the range of @ to 39. In addition Y2 must be greater than or equal
to Y1. The command "PLTH X1, X2, Y " is similar to "PLTV" except
that it plots a horizontal line.

Note: Apple draws an entire line just as fast
as it plots a singie point!

25

| Distributed under the Creative Commons License on page 4 Page 0033 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

The next example program, although long, illustrates Apple’s
ability to animate in color graphics mode. After typing the program
in, "LIST" it by sections to check for typing errors. Now "SAVE" it
on cassette tape before "RUN"ing it. Do this because if you made a
typo error that you did not catch, "RUN"ing the program may clobber
it.

16 GOTO 1888
28 IF PEEK{CTI<122 THEN RETURH !
38 POKE-16365,8:607T0 1&7a :
188 PLTC CLX(I3:D=CézIF RHDCH+T+0T 1He
CSTHENI=ABSCF + 3

HHDCI+RHDOH+C3 3%D3-C3 02

EJ
9 H=ABS{FMMD{ {+SGH{RND{ Y+C08 3-02 1#¢ RH
T R

PRERHD Y+ 3
148 GOSUE 25:G07T0 iass
ZBE PLTG:D=USR:-3353
285 FOR #=8 To 3=
218 D=CZ: I=FHHD{ I+CTr:T=1I
228 D=CE:PLTC CLESFHMDCI+H 33
238 PLTH Ci1.,.04,7:PLTY C1.,04,C04~-1
248 PLTC CLE{FHHDCJ+H 3
238 PLTY C1.,04,J:FLTH Cil.04,04-1
SE8 MEHT:H=H+1
&78 G0ZUE 28:507T0 zZas
388 PLTG:D=USR(-3353
383 b=D+1:IF [0>15 THEH D=8
) 318 FOR I=1 TO S:FOR J=1 T0O 4
388 PLTC JHD i H=J#C8+D 1+ =04~}
338 PLTH X,M,5:PLTY A M M:PLTH H,H, H:P
LTY

(R
L
sl
L]
ey

348 HEXT:NEXT
358

GOSUEB 29:50T0 385

(Program continued on next page.)

26

Page 0034 of 0083)

| Distributed under the Creative Commons License on page 4

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

bt ot
[LU v SRV B A]
o i)
G e GO

an o

L])

s el (T e ()
]

oo
I 3
o)

)
U B O

.

3
b ek
s
o)

L]

Lo v]

¥
"

1873
1873
{1 83¢
183y
1168
1115
1128
1138
1135

8]

I=8: I=G:H=8: ¥=8:¥=8: =9
CE=1258:C1=8:02=48:C3=1:104=33:05=3
:C7=-156384:C3=5:03=4
Di=14:02=.43:03=3.1:04=158:05=14

)
m
|
o
e
=
©

L J=H-DRINTCRAD 2
3,13,15,11,3,2,58,7,14,12

]
o
juv]
[ix]
"

[Wn]

|
D]
A
)

i}

[y L]
-
Lo

e .
% I
L1 .
M

]
Lwel
XN

L L]

[
»

‘*N

(o]

1

pin

L]

=
™

TEH
»=USHC-935 3
PRINT:PRIHNT
PQIHT“CSLQE E
PREIHT™1
PRIMT™C

= CEOS =
FRINT 3 sﬁNHEL”
PRINT™ 4 SFLOTCH™

FRINT"S EHIT SEﬁﬂE”
FPRIMT"HIT AHY EEY

tPRINT

i
15 MEMU WHILE DEMO IS aaﬂﬁzﬁu PRINT
1156 PRINT"EHTER DEMO HUMBER=";:GETAS
1168 D=VAL{A$:0H D aaTa 3166,288,3589,
4858 ,2068
1178 PRINTA$:PRINT"USE OMLY HOS. 1 THR
U 5*:50T01836
2988 TEX
2819 D=USR{-23%
2829 5TOP
3108 PLTG:D=USR(-935
- i1i@ FOR I= & TO 31
3128 PLTC I~2:PLTY 8,19,1
3138 PLTC CL%(I~<23:PLTY 28,33,
3148 HEHT
3158 PRINT"STAHDARD COLORS OH TGR®
3168 PRINT"HARMONIC COLORS ON BOTTON"
3178 GET A%$:GOTO 187

(Program continuted on next page.)

27

| Distributed under the Creative Commons License on page 4

Page 0035 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

4388 HK=12:¥=23: I=RHD{ X xld+1

4818 D=USR(-935:PRINT:FRIHNT

4628 PRIMTYEBACKGROUND COLOR - 1 THREU 3
PR ::GET AF:FPRIHTAES

4835 D=VYAL{A$»:IF D=8 THEH 48298

4548 PRIMT®"SPLOTCH SIZE - & THRU 2 7%;
:GETA$:FPRINT AF:HN=VAL{A$+30

4958 IF H{1 THEH 4840
4@58 PLTG:POKE-1583282.8
4878 PLTC D:FOR Q—4; TG0 8 STEFP -1:PLTH ~
8,33 ,0HERT :
4Buu GG:G 168

The program is not written in the order that it executes. This
is to establish maximum operat1ng speed as is outlined in Appendix E.
A frequently used subroutine is located as early in the program as
possible at lines 2@ and 3@. Three demo programs are next in Tines
10¢ - 14d, 200 - 27d¢, and 3060 - 354. .

Line 16@0@ defines most frequently used variables, then frequently
used constants are defined as variables. Lines 1878 - 1170 are the
jntroduction and instructions. A non-animated demo program is
Tocated last in lines 3109 - 317Q.

Now run the program and select demo #1. Harmonic colors
is just a different sequence in displaying standard colors.
Adjacent colors are color coordinated. This different sequence is
established in the number array defined in lines 1640 - 1060. We
will use this in the other examples.

To keep variables within the maximum allowable range, we
define a user program in line 1030:

193@ DEF FNMD(X) = X-D*INT(X/D)

This function calculates X moduio D where D is a pre-defined
variable.

"CROSSES" demo is located at lines 280 - 278 and plots a
sequence of horizontal and vertical lines.

"TUNNEL" demo is Tocated at lines 309 - 350 and plots a sequence
of squares.

"SPLOTCH" demo is located at 1ines 100 - 140 and is initialized
by Tines 4P9P0 - 498@. It plots a point; then moves at random one
or two positions in any direction then plots again. "SPLOTCH SIZE"
input is used to establish a probability that the color of the next
point will be changed.

Try out each of the demos.

28

Distributed under the Creative Commons License on page 4 Page 0036 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

In "SPLOTCH", Apple has illustrated another color graphics
feature. The four lines of text at the bottom of the screen have
been eliminated and the color field is now 40 by 48 in size. The

vertical axis Y can now range from @ to 47. This switch was done
by the POKE in line 40608:

4069 PLTG: POKE - 16392,0

Note: From all color graphics (40 x 48) display
mode, "PLTG" command will switch Apple to mixed
color graphics mode (40 x 40 plus 4 lines of
text) and “"TEX" command will switch to all

text mode.

The next example illustrates how Apple can read back the color
of a given screen location. This is the reverse of a "PLTP" command.
This routine will, given an X, Y position, tell the computer what color

was plotted at that location sometime in the past. Type in and "RUN"
the following program.

18 GOTO S84
20 HR=H+RYiHY=Y+YYoCL
36 POKE D3,HX:POKE D2,HY¥:J=USR(DL>
43 IF PEEK(D4)=C2 GOTO 38
58 PLTC CL:PLTP M, HY
&8 PLTC CH:PLTP H.Y
78 K=HX:v=HY:GOTO 286
S8 RY=-HYiYY=-YY
a5 POKE D3,%:J=USR(DIL:IF PEEK(D4=C2
THEH K¥W=-XY
188 FOKE D3.M¥:POKE D2,¥:J=USR{DLJ:IF
FPECK{D43=C2 THEH ¥¥=-¥¥
118 IF PEEK(DE3{D5 GOTO 28
120 FOKE-1536%,8:7TE
136 J=USR(-93&3:5TOF :

(program continuted on next page.)

29

| Distributed under the Creative Commons License on page 4

Page 0037 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

S8 HE=@:HY=8:H=3:¥=2:HV¥=i:¥¥=2:0L=2:]
=5

S18 CA=8:01=3:CL=15:C02=2

528 D1=784:02=785:03=7a7:04=219:D05=127
:DE=-15334

538 DATA15%,8,1658,08,32,113,248,141,42, °
3,96 ' .

S48 FOR I= 7S84 TO 794:READ J:POKE I,J: -
MEXT -

555 PLTG:J=USR{-33563:PLTC C2 :

568 PLTH ,39,8:PLTY 9,39,39:PLTY 5,39 -
LB:PLTH 8,39,39

579 FOR I= @ TO 3 ' -

529 PLTH £,13,I+6:PLTY 26,32, 1+26: HEXT

538 FOR I= 8 T0 5

686 PLTY 20,35,1+%:PLTH 24,34,1+12:HEX
T o

£18 PRIMTYHIT AHY KEY TO STOP®

528 GOTO 29

The main animating program is located in lines 20 - 110.
Compare this with the IF...THEN ricochet program you tried
on page 1l1.

Lines 5@@ - 62@ do housekeeping and are used only once
(See Speed Hints Appendix). Line 500 defines most frequently
.variables. Lines 51@ and 520 define frequently used constants
as variables. Data statement in line 53@ contains the decimal
values for a machine language subroutine which is used to read
the screen color. Line 54@ "POKE" 's this program into memory
starting at hexidecimal Tocation $31@8. The following routine is
then used in APPLESOFT BASIC to read screen color:

I=PEEK(810)

POKE 787,X SETS X
POKE 785,Y SETS Y
J=USR(784) CALL SUBROUTINE

FETCH COLOR OF X,Y

The advantage of this routine is that the BASIC program does
not have to keep track of where every object is on the screen.

30

| Distributed under the Creative Commons License on page 4

Page 0038 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Here is how the program works:
Line #

10 -
5p@9-52p ---
53p-54p ---
550- ---
560 ---
570-600 ---
610 ---
620 ---

20 ---

40 ---

60 ——-

99 ---

31

DESCRIPTION

Go do housework at 509

Define variables for speed

Set up machine language subroutine
Initialize graphics mode

Draw a border around screen

Draw a square

Message

Go to main program

Begin main program loop.

Calculate proposed new ball X

and Y coordinates by adding

their respective incremental
velocities to their old positions.
Set up to read screen color at
proposed new ball position.

The example on page 11 decided

on ball reflection by testing

to see if new ball position

was out of bounds (39 or @)

In this program, Apple checks

to see if proposed new ball
position is the color of an
obstacle. If not, program continues
to next line. If an object, the
program branches to line 8.
Variable C2 is the color of the
object(s).

Set color to ball color (CL);
plot new ball

Set color to background color
(CP); erase old ball

Update coordinates; go back to
20 to calculate next move.

Ball will be on object if plotted
on proposed new position, so
don't plot it on top of object.
Reverse both X and Y velocities
so that ball will reverse both X
and Y directions. This is valid
at a corner but not at a wall.
Test for non-vertical wall by
reading screen at old X but

new Y. If true, do not reverse
X velocity. (Line 8¢ reversed
XV and line 9@ will reverse it
again so that it has sign of
original direction.)

| Distributed under the Creative Commons License on page 4

Page 0039 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 --

DigiBarn Computer Museum -- Apple Computer, Inc.

Line

100
119

120
139

Note:
on the same line number (see

lines 53@ - 549 to read a paddle.

POKE 796,N
Z=USR(795)
X=PEEK(819)

S8 IF

188 IF

118 IF PEEE{DZ>>D4 THEHN
izg GOTO 28

138 PLTC CB:PLTR X.,Y
148 H=Hy:Y¥=HY:G0T0O 28
158 POKE-183565.,8:TEX
168 J=USR({-335):5T0F

Tisting continued on next page at statement

32

DESCRIPTION

Same as 90¢, but test for non-
horizontal wall with old X and

new Y.

If key has not been depressed, go
back to 20 and calculate next move
for ball.

Key was depressed, so clear key-
board and go to text mode.

Clear screen and stop

No statements may follow "TEX command

128 above).

Another built-in feature of Apple is its ability to read the position
or value of up to 4 potentiometers (game paddles). The following illustrates
how to implement this capability in APPLESOFT.
APPLESOFT needs a short machine language program which is "POKE'ed in by

Like the screen color routine

The following format is needed to read a paddle:

Where N is paddle number (9-3)
Call Subroutine
X is now paddle value

Reading a paddle is illustrated in the following program.

e
|
Lat

500

| Distributed under the Creative Commons License on page 4

Page 0040 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc

Sag Mi=@:HY=8:H=8:¥=8: $8=255: ¥1=8:¥&=2
5S:¥1=8:J7=9

5ig C@8=3:C1

528 DB=735:
=127

538 CATALSEZ,8,32,38,251,158,141,43,3,%
&

4@ FORI=795 TO S84:READ J:POKE I.J:HE

AT

55 J=USR{-33&1: PRINT:PRINT:FRINT

568 PRIHT"APPLE WILL HNOUW CALIEBRATE FAD
DLES #487 oI)

5783 PRIHTTAHD
ORTH OVERT

533 PRINT*HIT AHY EEY WHEH THROUGH"
FOE I= B Tf 588°°
FOKE D1

21. MOYE THEM BACK AND F

wn

[x}]
[Y k]
[\ 3]

518 IF NXCKD Tﬁaﬁ‘xg=ﬁx

g2@ IF NX>¥1 THEH RI=HX

638 POKE D1,C1l:J=USR{DZ):HY=PEER{DZ]
648 IF HY<{Y® THEHN Y8=HY

658 IF MY>Y1 THEH ¥I=HY

568 IF PEEK(D3< ;

565 FOKE -16

678 PRINT:FR

FPROXK. @ TO 25

575 PRINT

538 PRINT"YOU

pHErt -7 A1

ca@ PRINT"YOUR POL #1 ACTUARL RAHGE WAS
"yYEzT -3Vl

78 PRIHT:PRINTYHIT AHY KEY TO COHTIHU

E":GETA$

718 PLTG: J=USR{-33&3

-2@ PRINT:PRINT"FDL #8 IS BALL ¥ POS.;
POL #1 IS ¥"

738 GOTO 28

33

| Distributed under the Creative Commons License on page 4

Page 0041 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

For a variation on this program change 1line # 130 (see
Appendix B on Editing) to read:

130 PLTC CX : PLTP X, Y
Add Tine 515 as follows:
515 CX =2 : CL =13
Now "RUN" the program. See the change? Experiment.
You'll see how easy and fun it is to modify programs. Also
try modifying the simple program on the next page.

Use the rest of this page to record your own changes

LINE# CHANGE RESULT

34

| Distributed under the Creative Commons License on page 4 Page 0042 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

For a final examp]e; Apple will demonstrate how to draw intricate
patterns with a very simple program. Type in and "RUN" the
following:

88

TOCE£:FORI=CITOCS:FORI=CBTOLS

[

17O

i4a T
Ei=C

28

LN
[

[}
(R

o
ke

38 PLTC I=C3+J-W:iE=I+J
4@ PLTP I,K:PLTP K,I:PLTP C4-1I,C4-K:PL
TP C4-KE,C4-T ’ ' '

S5 PLTP K,C4-I:PLTP C4-I,K:PLTF I,C4-K
:FLTR Cd-K,T "

68 HEXT:HEXT:HEXT:GOTO20

168 I=0:K=0:J=0:W=8:C8=9:C1=1:£3=4:C4=
48:C6=16:09=1%

118 PLTG:W=USR{-%363:GOTOZ8

A1l major commands in APPLESOFT have now been illustrated.
The reference section and appendices that follow present
additional information.

35

| Distributed under the Creative Commons License on page 4 Page 0043 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

REFERENCE
MATERIAL

36

| Distributed under the Creative Commons License on page 4 Page 0044 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

COMMANDS

A command is usually given after BASIC has indicated
that it is waiting for a comiand with a " " prompt
character and a tlashing cursor. They are executed
inmediately after the "Return" key is depressed.

This is called the "Command Level". Commands may be
used as program statements. Certain commands such

as LIST, NEW and LOAD will terminate program execution
when they finish. More than one command may be given
on the same line if they are separated by a colon (":").

NAME EXAMPLE PURPQSE /USE

CLEAR CLEAR Zeroes all Variables and Strings

CONT CONT Continues program execution after a control-C is typed

or a STOP statement is executed. You cannot continue
after any error, after modifying your program, or before
your program has been run. One of the main purposes of
CONT is debugging. Suppose at some point after running
your program, nothing is printed. This may be because
your program is performing some time consuming calcula-
tion, but it may be because you have fallen into an
"infinite loop". An infinite loop is a series of BASIC
statements from which there is no escape. Computer will
keep executing the series of statements over and over,
until you intervene or until power to the computer is
cut off. If you suspect your program is in an infinite
loop, type in a control-C. The line number of the
statement BASIC was executing will be typed out. After
BASIC has typed out “Break In.." and "2 ", you can use
PRINT to type out some of the values of your variables.
After examining these values you may become satisfied
that your program is functioning correctly. You should
then type in CONT to continue executing your program
where it left off, or type a direct GOTO statement to
resume execution of the program at a different line.

You could also use assignment (LET) statements to set
some of your variables to different values. Remember,
if you terminate a program and expect to continue it
later, you must not get any errors or type in any new
program lines. If you do, you won't be able to continue
and will get a “CAN'T CONTINUE" error. It is impossible
to continue a direct command. CONT always resumes execu-
tion in your program when control-C was typed.

If a control-C fails to stop program execution, hit the
"Reset" key then type "@G" and depress the "Return" key.
This may recover your program.

LIST LIST X Lists line "X" if there is one.

LIST or LIST- . Lists the entire program. If in process, "LIST" may be
interrupted by a control-C. BASIC will complete LISTing
the current line and will halt with a "BREAK".

LIST X- Lists all lines in a program with a line number equal to
or greater than "X".

LIST -X Lists all of the lines in a program with a line number
less than or equal to "X".

LIST X-Y Lists all of the lines within a program from X to Y.

LOAD LOAD Loads (reads) an APPLESOFT floating point BASIC proaram
from cassette tape. First beep indicates that Apple
has found beginning of program on tape. Second beep and
a" " prompt character and a flashing curscr on the
TV screen indicate that the program has been successfully
loaded without an error. If message indicates that error
occurred while loading, re-check cassette settings and
cables and try again. Note: Programs saved from
integer BASIC (">") may not be run directly in floating
point ("1 ") and vice versa.

37

| Distributed under the Creative Commons License on page 4 Page 0045 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

NAME

RUN

NEW

SAVE

EXAMPLE

RUN

RUN 200

NEW

SAVE

SAVE:SAVE

ARITHMETIC OPERATORS

SYMBOL

+

(t+ is a shift-n)

SAMPLE STATEMENT

A=1pp
LET 2=2.5

B=-A

130 PRINT X+3

149 X=R*(B*D)
159 PRINT X/1.3
169 Z=R+T+Q

179 J=1pp-1

LOGICAL AND RELATIONAL OPERATORS

<>

19 IF A=15 THEN 49

79 IF A<>@ THEN 5

39 IF B>10P THEN 8

169 IF B<2 THEN 1P

Starts execution of the program currently in memory at
the Towest numbered statement. RUN deletes all variables
(does a CLEAR and RESTORCS DATA. If you have stopped
your program and wish to continue execution at some

point in the program without clearing variables, use a
direct GOTO statement to start execution of your

program at the desired line.

Starts RUN at the specified line number
Deletes current program and all variables.

Saves (stores) the current floating point program onto
cassette tape. Current program is left unchanged. Apple
does not verify that the recorder was running and in
“record" mode or that the tape is good. "2 " prompt

and cursor will return when "SAVE" is complete.

Saves a program twice on tape so that if there is a bad
Spot on the tape on the first one, the second may be able
to be retrieved

PURPOSE/USE
Assigns a value to a variable.
The LET is optional only if option 2 is loaded.

Negation. Note that @9-A is subtraction, while -A is
negation.

Exponentiation (equal to X*X*X in the sample statement).
P4P=1; P to any other power = Q;AtB with A negative and
B not an integer gives an "ILLEGAL QUANTITY" error.

Multiplication

Division

Addition

Subtraction

PURPQSE/USE

Expression Equals Expression
Expression Does Not Equal Expression
Expression Greater Than Expression

Expression Less Than Expression

38

| Distributed under the Creative Commons License on page 4

Page 0046 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

LOGICAL AND RELATIONAL OPERATORS (CONT.)

SYMBOL SAMPLE STATEMENT PURPOSE/USE

<=,=< 189 IF 10@<=B+C THEN 10 Expression Less Than Or Equal To Expression

>=,=> 199 IF Q=>R THEN 50 Expression Greater Than Or Equal To Expression

AND 2 IF A<5 AND B<2 THEN 7 If expression 1 (A<5) AND expression 2 (B<2) are both

true, then branch to line 7

OR IF A<l QR B<2 THEN 2 If either expression 1 (A<l) OR expression 2 (B<2) is
true, then branch to line 2

NOT IF NOT Q3 THEN 4 If expression "NOT Q3" is true (because Q3 is false),
then branch to line 4 NOTE: NOT -1=0 (NOT true=false)

AND, OR and NOT can be used for bit manipulation, and for
performing boolean operations.

These three operators convert their arguments to sixteen
bit, signed two's, complement integers in the range
-32768 to +32767. They then perform the specified logical
operation on them and return a result within the saue
range. If the arguments are not in this range, an error
results.

The operations are performed in bitwise fashion, this
means that each bit of the result is obtained by
examining the bit in the same position for each argument.

The following truth table shows the logical relationship
between bits:

OPERATOR ARG. 1 ARG. 2 RESULT
AND 1 1 1
g 1 2
1 [g
d g 2
OR 1 1 1
1 g 1
[1 1
[2 9
NOT 1 - 2
8 - 1

39

.

| Distributed under the Creative Commons License on page 4 Page 0047 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

LOGICAL AND RELATIONAL OPERATORS (CONT.)

" EXAMPLES: (In a1l of the examples below, leading
zeroes on binary numbers are not shown.

63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary 19008,
the result of the AND is binary 19908 or 16.

15 AND 14=14 15 equals binary 1111 and 14 equals binary 1119, so 15
AND 14 equals binary 1110 or 14,

-1 AND 8=8 -1 equals binary 1111....111 and 8 equals binary 100D,
so the result is binary 1800 or 8 decimal.

4 AND 2=¢ 4 equals binary 180 and 1 equals binary 18, so the
result is binary 1 because none of the bits in either
argument match to give a 1 bit in the result.

4 OR 2=6 Binary 100 OR'd with binary 10 equals binary 118, or

6 decimal.
19 OR 19=19 Binary 1010 OR'd with binary 1018 equal- binary 1010,

or 10 decimal.

-1 OR -2=-1 Binary 111...111 (-1) OR'd with binary 111...1110
(-2) equals binary 111...111, or -1.

NOT P=-1 The bit complement of binary 0 to 16 places is
sixteen ones (1111....1111) or -1. Also NOT -1=(.

NOT X is equal to -(X+1). This is because to form
NOT X the sixteen bit two's complement of the number, you
take the bit (one's) complement and add one.

NOT 1=-2 The sixteen bit complment of 1 is 1111....111d,
which is equal to -(1+1) or -2.

The following s a useful way of using relational
operators:

125 A=-(B>C)*B-(B<=C)*C This statement will set the
variable A to MAX (B,L) = the
larger of the two variables B
and C.

40

| Distributed under the Creative Commons License on page 4 Page 0048 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum

-- Apple Computer, Inc.

RULES FOR EVALUATING EXPRESSIONS:

Operations of higher precedence are performed before
operations of lower precedence. This means the multi-
plication and divisions are performed before additions
and subtractions. As an example, 2+1@/5 equals 4, not
2.4. Wnen operations of equal precedence are found in
a tormula, the left hand one is executed first:
6-3+5=8, not -2.

The order in which operations are performed can always

be specified explicitly through the use of parentheses.

For instance, to add 5 to 3 and then divide that by 4,

we would use (5+3)/4, which equals 2. If instead we

had used 5+3/4, we would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions
is as follows, in order beginning with the highest pre-
cedence: (Note: Operators listed on the same line

have the same precedence.)

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS
EVALUATED FIRST -

2) t EXPONENTATIQI!
3) NEGATION -X WHERE X MAY BE A FORMULA
4) x / MULTIPLICATION AND DIVISION
5) + - ADDITION AND SUBTRACTION
6) RELATIONAL OPERATORS: = EQUAL

(equal precedence for <> NOT EQUAL

all six) < LESS THAN

GREATER THAN
LESS THAN OR EQUAL TO
GREATER THAN OR EQUAL TO

7) NOT LOGICAL AND BITWISE “NOT" LIKE
NEGATION, NOT TAKES ONLY THE
FORMULA TO ITS RIGHT AS AN

<
>

0wV

ARGUMENT .
8) AND LOGICAL AND BITWISE "AND"
9) OR LOGICAL AND BITWISE "OR"

Relational Operator expressions will always have a value
of True (-1) or a value of False (#). Therefore,
(5=4)=, (5=5)=1, (4>5)=p, (4<5)=-1, etc.

The THEN clause of an IF statement is executed whenever
the formula after the IF is not equal to #. That is to
say, IF X THEN...is equivalent to IF X<>d THEN...

STATEMENTS

Note: In the following description of statements, an
argument of V or W denotes a numeric variable, X denotes
a numeric expression, X$ denotes a string expression and
an [or J denotes an expression that is truncated to an
integer before the statement is executed. Truncation
means that any fractional part of the number is lost,
e.g. 3.9 becomes 3, 4.01 becomes 4.

An expression is a series of variables, operators,
function calls and constants which after the operations
and function calls are performed using the precedence
rules, evaluates to a numeric or string value.

A constant is either a number (3.14) or a string
literal ("F00").

41

| Distributed under the Creative Commons License on page 4

Page 0049 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STATEMENTS (cont.)

NAME EXAMPLE PURPOSE/USE
DATA 19 DATA 1,3,-1E3,.P4 Specifies data, read from left to right. Information

appears in data statements in the same order as it
will be read in the program.

2§ DATA " F00,Z00" Strings may be read from DATA statements. If you want
the string to contain leading spaces (blanks), colons (:),
or commas (,), you must enclose the string in double
quotes. It is impossible to have a double quote within
string data or a string literal; i.e., (““ANYTHING"")
is illegal. Use a single quote mark (') instead.

DEF 199 DEF FNA (V)=v/B+C The user can define functions like the built-in functions
(SQR, SGN, ABS, etc.) through the use of the DEF
statement. The name of the function is "FN* followed by
any legal variable name, for example: FHNX, FNJ7, FNKO,
FNR2. User defined functions are stricted to cne line.
A function may be defined to be any expression, but
may only have one argument. In the example 8 & C are
variables that are used in the program. Executing the
DEF statement defines the function. User defined
functions can be redefined by executing another DEF
statement for the same function. User defined string
functions are not allowed. "V" is called the dumny
variable.

110 Z=FNA (3) Execution of this statement following the above would
cause Z to be set to 3/B+C, but the value of V would
be unchanged.

3), Allocates space for matrices. All matrix elements are
oM 113 0IM A(3),8(1p) set to zero by the DIM statement.

4 0IM R3(5,5),08(2,2, Matrices can have more than one dimension. Up to 255
1401 (5.5),08(2,2,2) dimensions are allowed, the size of each must be less
than 32767, and is limited by total memory available.

115 DIM Q1(N),Z(2*1) Matricgs can be dimengioqed dynamicgl]y during program
execution. If a matrix is not explicitly dimensioned
with a DIM statement, it is assumed to have 1s many
subscripts as implied in its first use and whose
subscripts may range from @ to 1@ (eleven elements).

117 A(8)=4 If this statement was encountered before a DIM state-
ment for A was fourd in the program it would be as if
a DIM A (1B) has been executed previous to the
execution of line 117. All subscripts start st zero
(0), which means that DIM X (12@) really allocates
101 matrix elements.

END 999 END Terminates program execution without printing a
BREAK message. (see STOP) CONT after an END state-
ment causes execution to resume at the statement
after the END statement. END can be used anywhere
in the program, and is optional.

FOR 300 FOR V=1 to 9.3 (see NEXT statement) V is set equal to the value of
STEP .6 the expression following the equal sign, in this case

1. This value is called the initial value. Then the
statements between FOR and NEXT are executed. The
final value is the value of the expression following
the T0. The step is the value of the expression
following STEP. When the NEXT statement is encountered,
the step is added to the variable.

42

| Distributed under the Creative Commons License on page 4 Page 0050 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STATEMENTS (cont.)

NAME EXAMPLE PURPOSE/USE

FOR 31¢ FOR v=1 T0 9.3 If no STEP was specified, it is assumed to be one.
If the step is positive and the rew value of the
variable is <= and final value (9.3 in this example),
or the step value is negative and the new value of
the variable is => the final value, then the first
statement following the FOR statement is executed.
Otherwise, the statement following the NEXT state-
ment is executed. All FOR loops execute the state-
ments between the FOR and the NEXT at least once,
even in cases like FOR v=1 TO 2.

315 FOR V=10*N TO 3.4/Q STEP SQR(R) Note that expressions (formulas) may be used for the
initial, final and step values in a FOR locp. The
values of the expressions are ccmputed only once,
before the body of the FOR....NEXT loop is executed.

320 FOR V=9 TO 1 STEP-1 When the statement after the NEXT ic executed, the
loop variable is not necessarily equal to the final
value, but is equal to whatever value caused the
FOR....NEXT loop to terminate. The statement between
the FOR and its corresponding NEXT in both exanples
above (310 & 320) would be executed 9 times.

GET 450 GET A Fetches a single‘numeric digit from the keyboard
without echoing back to TV screen and without the
need for depressing the "RETURN" key.

46@ GET AS Same as above but fetches a single ASCII character
from keyboard.

070 sd GOTO 1dd Branches to the statement specified.

GOSuB 10 GOsus 91¢ Branches to the specified statement (91p) until a
RETURN is encountered; when a branch is then made
to the statement after the GOSUB. GOSUB nesting is
limited only by the available memory.

IF...GOTO 32 IF X<=Y+23.4 GOTO 92 Equivalent to IF...THEN, except that IF...GOTO must
be followed by a line number, while IF...THEN can be
followed by either a line number or another statement.

[F...THEN 15 IF X<@ THEN 5 Branches to specified statement if the relation is True.
20 IF X<@ THEN PRINT “X LESS Executes all of the statements on the remainder of the
THAN @" line after the THEN if the relation is True.
25 IF X=5 THEN 5Q:Z=A WARNING. The "Z=A" will never be executed because if
the relation is true, BASIC will branch to line 59.
If the relation is false BASIC will proceed to the line
after line 25.
26 IF X< THEN PRINT “ERROR X In this example, if X is less than U, the PRINT state;
" ment will be executed and then the GOTO statement wil
NEGATIVE": GOTO 350 branch to line 350. If the X was 0 or positive, BASIC
will proceed to execute the lines after line 26.
[NPUT 3 INPUT V,W,W2 Requests data from the keyboard (to be typed in). Each

value must be separated from the preceeding value by

a conma (,). The last value typed should be followed by
a carriage return. A "?" is typed as a prompt character.
However, only constants may be typed in as a response to
an INPUT statement, such as 4.5£-3 or “CAT". If nore
data was requested in an INPUT statement than was typed
in, a "7?" is printed and the rest of the data should be
typed in. If more data was typed in than requested, the
extra data will be ignored and a warning "EXTRA [GIORED"
will be printed when this happens. Strings must be
input in the same format as they are specified in DIM
statements. If the "RETURN" key is depressed without
any data, program execution will be halted.

43

| Distributed under the Creative Commons License on page 4 Page 0051 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STATEMENTS (cont.)

INPUT

LET

NEXT

ON...GOTO

ON...GOSUB

PLTC

EXAMPLE

5 INPUT "VALUE";V

300 LET W=X

319 v=5.1

340 NEXT V

345 NEXT

350 NEXT V,W

1yg ON [GOTO 10,20,30,49

PURPQSE/USE

195 ON SGN (X) +2 GOTO 4¢,50,60

110 ON I GOSUB 50,60

510 PLTC I

44

Optionally types a prompt string ("VALUE") before request-
ing data from the terminal. Typing CONT after an [NPUT

command has been interrupted will cause execution to resume
at the INPUT statement.

Assigns a value to a variable and is optional.
(option 2 only)

"LET" is not allowed for option 1 with color graphics.
Marks the end of a FOR loop.

If no variable is given, matches the most recent FOR
loop. Executes faster than example in line 349.

A single NEXT may be used to match multiple FOR state-
ments. Equivalent to NEXT V:NEXT W.

Branches to the line indicated by the I'th number after
the GOTO. That is:

IF I=1, THEN GOTO LINE 19
IF 1=2, THEN GOTO LINE 20
IF [=3, THEN GOTO LINE 3p
[F I=4, THEN GOTO LINE 42

If I=1 or [attempts to select a nonexistent line
(>=5) in this case, the statement after the ON state-
ment is executed. However, if [is »255 or <0,

an "ILLEGAL QUANTITY" error message will result. As
many line numbers as will fit on a line can follow an
ON...GOTO

This statement will branch to line 49 if the expression
X is less than zero, to line 50 if it equals zero, and
to line 60 if it is greater than zero.

Identical to "ON...GOTO", except that a subroutine call
(GOSUB), is executed instead of a GOTO. RETURN from the
GOSUB branches to the statement after the ON...GOSUB.

(Option 1 only) Sets TV display color toc value in
expression 1. Expression I must be in the range of P
to 15. Colors are assigned the values:

p - Black 8 - Brown

1 - Magenta 9 - QOranyge

2 - Dark Blue 19 - Grey

3 - Light Green 11 - Pink

4 - Dark Green 12 - Green

5 - Grey 13 - Yellow

6 - Medium Blue 14 - Blue/Green
7 - Light Blue 15 - wWhite

Color remains set until a new "“PLTC" command changes
it or until a "PLTG" command clears screen and sets
PLTC 9.

| Distributed under the Creative Commons License on page 4

Page 0052 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STATEMENTS (cont.)

NAME

PLTG

PLTH

pLTP

PLTV

POKE

PRINT

READ

EXAMPLE

53p PLTG

559 PLTG:POKE-16392,0

579 PLTH X1, X2, Y

599 PLTH 9, 19, 9

610 PLTH 20, 39, 39

630 PLTP X, Y

65@ PLTP 28, 20

670 PLTV Y1, Y2, X

357 POKE I, J

360 PRINT X,Y,Z,

370 PRINT

380 PRINT X,Y

390 PRINT "VALUE IS";A
40 PRINT A2,8,

419 PRINT MID$(AS$,2)
429 7 xvY,2

499 READ V, W

PURPQSE/USE

(Option 1 only) Switches TV screen display from all
text mode into color graphics (40x40) with 4 lines of
textat bottom of screen.

Sets all color graphics (40x48) mode with no text
at bottom.

(Option 1 only) If in color graphics mode, this

comnand draws a horizontal line, of color as set by
“PLTC", from coordinate X1 to X2 at position Y. lumeric
value for X1, X2 and Y must be between 9 and 39 or
program may blow up. (Y may range up to 47 if in

all color modes; {.e., no 4 lines of text at bottom

of screen.

Draws horizontal line along the top of the TV screen
from upper-left corner to center of screen.

Draws horizontal line along the bottom of the TV
screen from bottom center to lower-right corner.

(Option 1 only) -Plots a small square of color set
by "“PLTC" at coordinates specified by expressions

X and Y. Value of X must be between @ and 39 and Y
between P and 39 or P and 47.

Plots a small square at center of screen.

(Option 1 only) Draws a vertical line, of color set
by “PLTC" from Y1 to Y2 at X. See "PLTH".

The POKE statement stores the byte specified by its
second argument (J) into the location given by its
first argument (I). The byte to be stored must be
=>@ and <=255, or an "ILLEGAL QUANTITY" error will
occur. The address (I) must be =>-65535 and <=65535,
or an "ILLEGAL QUANTITY" error will result.

Prints the value of expressions on the terminal. If
the 1ist of values to be printed out does not end with
a comna (,) or a semicolon (;), then a carriage
return/line feed is executed after all the values have
been printed. Strings enclosed in quotes (") may also
be printed. If a semicolon separates two expressions in
the list, their values are printed next to each other.
If a comma appears after an expression in the list,

then spaces are outputted until the beginning of the
next column field is reached. If there is no list of
expression to be printed, then a carriage return is
executed. String expressions may be printed. A question
mark is the same as a "“PRINT" command.

Reads data into specified variables from a DATA statement.
The first piece of data read will be the first peice of
data listed in the first DATA statement of the program.
The second piece of data read will be the second piece
listed in the first DATA statement, and 50 on. When all
of the data have been read from the first DATA statement,
the next piece of data to be read will be the first piece
listed in the second DATA statement of the program.
Attempting to read more data than there is in all the
DATA statements in a program will cause an "OUT OF DATA"
error. The line number given in the "SYNTAX ERROR" will
refer to the line number where the error actually 1is
located.

45

| Distributed under the Creative Commons License on page 4

Page 0053 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STATEMENTS (cont.)

NAME EXAMPLE PURPOSES/USE

REM 50@ REM NOW SET V=0 (Option 2 only) Allows the programmer to put comments
in his program. REM statements are not executed, but
can be branched to. A REM statement is terminated by
end of line, but not by a ":".

5109 REM SET v=p: V=0 In this case the V=0 will never be executed by BASIC.
520 V=¢g: REM SET V=0 In this case V=0 will be executed.
539 GOT054@: SET v=0 (Option 1) This format may be used to simulate a

"REM" in programs using graphics commands. lhere the
"REM" statement is not available.

RESTORE 600 RESTORE Allows the re-reading of DATA statements. After
a RESTORE, the next piece of data read will be the
first piece listed in the first DATA statement of
the program. The second piece of data read will
be the second piece listed in the first DATA state-
ment, and so on as in a normal READ operation.

RETURN 700 RETURN Causes a subroutine to return to the statement
after the most recently executed GOSUB.

STOP 9 STOP Causes a program to stop execution and to enter
0 dad command mode. Prints BREAK IN LINE 9000 (as per
this example). CONT after a STOP branches to the
statement following the STOP.

TEX 8pp TEX (Option 1 only) Sets TV display to all text mode
§ from color graphics mode and resets TV display to
24 lines of 40 characters each if otherwise.

819 TEX: GOTO 5¢ I1legal....no statements may follow "TEX" on same
Tine number

820 X=USR(-1233) g?g;i?: épg:og)z Equivalent to "TEX" but works

[NTRINSIC FUNCTIONS

NAME EXAMPLE PURPOSE /USE

"85 (X) 120 PRINT ABS (X) Gives the absolute value of the expression X.
ABS return X if X>=f, -X otherwise.

ATR 130 PRINT ATN(X) Gives the arctangent of the argument X. The

result is returned in radians and ranges from
-n/2 to n/2. (n/2=1.5708)

Cos(x) 14¢ PRINT COS (X)
Gives the cosine of the expression X. X is
interpreted as being in radians.

EXP(X
(x) 15g PRINT EXP(X) Gives the constant “E" (2.71828) raised to the

power X. (E4X) The maximum argument that can
be passed to EXP without overflow occuring is
87.3365.

46

| Distributed under the Creative Commons License on page 4 Page 0054 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

INTRINSTC FUNCTIONS (CONT.)

NAME

FRE(X)

INT(X)

LOG(X)

PEEK

POS(I)

RND(X)

SGN(X)

SIN(X)

SQR(X)

TAB(I)

TAN(X)

USR(1)

EXAMPLE

16p PRINT FRE(R)

165 PRINT FRE(A$)

179 PRINT INT(X)

180 PRINT LOG(X)

199 PRINT PEEK(I)

2pP PRINT POS(I)

219 PRINT RND(X)

22D PRINT SGN(X)

238 PRINT SIN (X)

24p PRINT SQR(X)

250 PRINT TAB(I)

26p PRINT TAN(X)

209X=USR(T)

PURPOSE/USE

Gives the number of memory bytes currently unused by
BASIC not including strings.

Gives number of unused memory bytes including strings.

Returns the largest integer less than or equal to its
argument X. For example: INT(.23)= 9, INT(7)=7,
INT(-.1)=-1, INT(-2)=-2, INT(1.1)=1.

The following would round X to D decimal places:

INT(X*1@4D+.5)/INT(19tD +.5)

Gives the natural (Base E) logarithm of its argument
X. To obtain the Base Y logarithm of X use the
formula LOG(X)/LOG(Y). 7 = LOG(7)/LOG(1D).

The PEEK function returns the contents of memory
address I. The value returned will be =>p and
<=255, If I is 65535 or <-65535 an "ILLEGAL
QUANTITY" error will occur. An attempt to read a
non-existent memary address will return 255. (see
POKE statement)

Gives the current position of the cursor on screen.
It is referenced to the left hand margin and has a
value of zero if at left margin. See Special Control
and Features section.

Generates a random number between @ and 1. The
argument X controls the generation of random
numbers as follows:

X<@ starts a new sequence of random
numbers using X. Calling RND with
the same X starts the same random
number sequence. X={) gives the value
from a timer. X>- generates a new
random number between P and 1. Note
that V-A)*RND(1)+A will generate a
random number between A & 8.

Gives 1 if X>@, @ if X=G and -1 if X<@.

Gives the sine of the expression X. X is interpreted
as being in radians. Note: COS (X)=SIN(X+3.14159/2)
and that 1 Radian =18@/m degrees=57.2958 degreces; so
that the sine of X degrees=SIN(X/57.2958.

Gives the square root of the argument X. An "ILLEGAL
QUANTITY" error will occur if X is less than zero.

Spaces to the specified position on screen. May be
used only in PRINT statements. [t specifies the
absolute position from the left hand margin where
printing is to start. See Special Features and
Controls Section.

Gives the tangent of the expression X. X is inter-
preted as being in radians.

Calls machine language subroutine at location I.

47

| Distributed under the Creative Commons License on page 4 Page 0055 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STRINGS

A string may be from to 255 characters in length. All
string variables end in a dollar sign ($); for example,
AS, 89%, K$, HELLOS.

String matrices may be dimensioned exactly like numeric
matrices. For instance, DIM A$ (19.1p) creates a string
matrix of 121 elements, eleven rows by eleven columns
(row U to 10 and columns @ to 1§). Each string matrix
element is a compiete string, which can be up to 255
characters in length.

The total number of characters in use in strings at any
time during program execution cannot exceed the amount of
string space, or an »OUT OF MEMORY" error will result.

NAME EXAMPLE PURPOSE/USE

DIM 25 DIM A$ (19,10) Allocates space for a pointer,and length for each
element of a string matrix. No string space is
ailocated.

[NPUT 40 INPUT X$ Reads a string from the user's terminal. String

does not have to be quoted; but if not, leading
blanks will be ignored and the string will be
terminated on a “," or ":" character

LET 27 LET AS="FOO"+V$ Assigns the valge of a string expression to a string
variable. LET is optional.

= String comparison operators. Comparison is made on

> the basis of ASCII codes, a character at a time

< until a difference is found. If during the comparison
<= of two strings, the end of one is reached, the shorter
>z string is considered smaller. Note that "A" is

<> greater than "A" since trailing spaces are significant.
+ 3P LET Z$=R$+Q% String concatenation. The resulting string niust be

less than 256 characters in length of an “STRING T0O
LONG" error will occur.

PRINT 60 PRINT X$ Prints the string expression on the screen.
7P PRINT "FQO"+A$

READ 50 READ X$ Reads a string from DATA statements within the
program. Strings do not have to be quotes; hut
1f they are not, they are terminated on a “,” or
o gharacter or end of line and leading spaces
:ri ignored. See DATA for the format of string
ata.

48

| Distributed under the Creative Commons License on page 4 Page 0056 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

STRING FUNCTIONS

NAME EXAMPLE PURPOSE/USE
ASC(X$) 393 PRINT ASC(X$) Returns the ASCII numeric value of the first

character of the string expression X$. See
Appendix K for an ASCII/number conversion table.
An "ILLEGAL QUANTITY" error will occur if X§ is
the null string.

CHRS(1) 275 PRINT CHR$(I) Returns a one character string whose single
character is the ASCII equivalent of the value
of the argument (I) which must be =>@ and <=255.

FRE(XS) . 272 PRINT FRE("") When called with a string argument, FRE gives the
number of free bytes in string space. This equals
amount of all free space.

LEFTS(XS, 1 31p PRINT LEFTS(XS,I Gives the leftmost I characters of the string
$(xs,1) p FTs(xs, 1) expression X$. If I<=0 or >255 an ILLEGAL QUANTITY"
error occurs.

LEN(XS) 22p PRINT LEN(XS) Gives the length of the string expression X$ in
characters (bytes). Non-printing characters and
blanks are counted as part of the length.

MID$ called with two arguments returns characters

MIDS(X3.1) 33p PRINT MIDS(XS,1) from the string expression X$ starting at character
position I. If I>LEN(I$), then MID$ returns a null
(zero length) string. If I<=@ or >255, an “ILLEGAL
QUANTITY" error occurs.

MID$ called with three arguments returns a string

MIDS(XS, 1,J) 340 PRINT MIDS(XS,1,J) expression composed of characters of the string
expression X§ starting at the I'th character for J
characters. If I>LEN(X$), MID$ returns a null
string. If I or J<=@ or >255, an "ILLEGAL QUANTITY"
error occurs. If J specifies more characters than
are left in the string, all characters from the I'th
on are returned.

RIGHTS(xS,1) 329 PRINT RIGHTS(XS$,I) Gives the rightmost I characters of the string
expression X§. When I<=p or >255 an “ILLEGAL
QUANTITY" error will occur. If I>=LEN(X$) then
RIGHT$ returns all of X§.

STRS(X) 299 PRINT STR$(X) Gives a string which is the character repre-
sentation of the numeric expression X. For
instance, STR$(3.1)=" 3.1".

Q Returns the string expression X$ converted to a
VAL(XS) 280 PRINT VAL(X$) . number. For instance, VAL("3.1")=3.1. If the
first non-space character of the string is not a
plus (+) or minus (-) sign, a digit or a decimal
point (.) then zero will be returned.

49

| Distributed under the Creative Commons License on page 4 Page 0057 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

SPECIAL_CHARACTERS
"Control” characters are indicated by a super-scripted
“C" such as GC¢. They are obtained by holding down the
CTRL key while typing the specified letter. Control
characters are NOT displayed on the TV screen. B8€ and

C“ must be followed by a carriage return. Screed editing
characters are indicated by a sub-scripted “E" such as
Og. They are obtained by pressing and releasing the

ESC key then typing specified letter. Edit characters
send information only to display screen and does not send
data to memory. For example, UC moves to cursor to right
and copies text while Ag moves cursor to right but does

not copy text.
DESCRIPTION OF ACTION
CHARACTER

“RETURN" key The "RETURN" key must end every line that is typed in
to tell the APPLE II that you have finished the line.

: (Colon) A colon may be used to separate statements or a line.
Colons may be used in direct or indirect statements.
The only limit to the number of statements per line
is that the total number of characters including spaces
may not exceed 255.

? (Question Mark) Question marks are equivalent to "PRINT" command. For
instance, ?2+2 is equivalent to PRINT 2+2. Question
marks can also be used in indirect statements. 107X,
when listed will be displayed as 10 PRINTX.

“RESET Key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor
and APPLE prompts with a "*" (asterisk) and a bell.
Hitting RESET key does NOT destroy existing BASIC or
machine language program. From the System Monitor, user
machine language programs may be typed in. From the
Monitor, you may return to APPLESOFT BASIC without
destroying current user BASIC program by typing "¥G" and
depressing the RETURN key. If while you are in the
Monitor, you change any data in the range $p.1fFF, you
can return to APPLESOFT by typing in "274DG" and this
will kill any current user BASIC program and will re-
write locations @.1FF.

8¢ If in System Monitor (as indicated by a "*", prompt
character and a flashing cursor), a control=8 and a
carriage return will transfer control to BASIC, scratch-
ing (killing) APPLESOFT and any existing BASIC program.
It will set HIMEM: to maximum installed user memory and
LOMEN: to 2048.

cc If in APPLESOFT BASIC, halts program and displays
line number where stop occured. Program may be
continued with a CONT command. If in System Monitor,
(as indicated by "*"), control C and a carriaqe
return will enter integer BASIC killing APPLESOFT
BASIC and the user program.

GC Sounds bell (beeps speaker)

HE Backspaces cursor and deletes any overwritten characters
from computer but not from screen. APPLE supplied key-
boards have a special "«" on the right side of the
keyboard that provides this function without using the
control button.

Jc Issues line feed only

Ve Compliment to HC. Forward spaces cursor and copies
overwritten characters. APPLE keyboards have "+ key
on right side which also performs this function.

X¢ Imnediately deletes current line.

Ag Move cursor to right; does not copy any data

Bg Move cursor to left; does not copy any data

Ce Move cursor down; does not copy any data

Df Move cursor up; does not copy any data

Eg Clear text from cursor to end of line

Fe Clear text from cursor to end of page

3¢ Home cursor to top of page, clear text to end of page.

50

| Distributed under the Creative Commons License on page 4 Page 0058 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Special Controls and Features

BASIC Examg]e DESCRIPTION
10 POKE-16304,p Switches display mode from text mode to color graphics

without clearing screen to black. ("PLTG" comnand
switches to color and clears screen to black and sets
mixed mode.)

20 POKE-16303,9 Switches display from color graphics to all text
mode without resetting scrolling window. ("TEX"
command also resets scrolling window to maximum and
positions cursor in lower left hand corner of TV
display.

30 POKE-16302,9 Sets all color graphics mode of 40x48 grid; i.e., no
text at bottom of screen

40 POKE-16301,9 Sets mixed color graphics mode; i.e., 40x40 grid of
16 colors with four lines of text each 40 characters
at bottom of screen. (Automatically dore by a “PLTC"
command.) :

50 POKE 32, L Set left margin of TV display to value specified by
L in the range of @ to 39 where @ is left most position.

60 POKE 33, W Set the width (number of characters per line) of TV
display to the value specified by W. W must Le greater
than zero. Wth must be less than 40; i.e., the rignt
margin must be 39 or less.

70 POKE 34, T Set top margin line of TV display to value specified
by T in the range of § to 23 where @ is the first line
on the screen. A POKE 34,4 will not allow text to be
outputted to the first four lines on the screen.

80 POKE 35, B Set bottom margin line of TV display to value specified
by T in the range of § to 23. B must also be larger
than T above; i.e., the bottom of the display cannot
be above the top. Text will scroll up when last line
is reached.

90 CH=PEEK(36) Read back the current horizontal position of the cursor
and set variable CH equal to it. CH will be in the
range of @ to 39 and is a relative position referenced
to the left hand margin as set by POKE 32,L. Thus, if
the margin was set by POKE 32,5, then the left margin
is 6 characters from the left edge of the screen and
if PEEK (36) returned a value of 5 then the cursor was
11 character positions from the left edge of the screen
and 6 characters from the left margin. This i: identical
to the "POS(X)" function where X is a dummy variable
(See next example.) -

100 POKE 36,CH Move the cursor to a position that is CH+l character
positions from the left hand margin. (Exp: POKE 36,0
111 cause next character outputted to he at left margin).
If left margin was set at 6 (POKE 32,6) and 70u wanted
to provide a character three positions from left edge,
then the left margin must be changed prior to vutputting.
CH must be less than or equal to the window width as set
by POKE 22,W and must be greater than or equal to zero.
110 CV=PEEK(37) Read back the current vertical position of the cursor and
set CV equal to it. CV is the absolute vertical position
of the cursor and is not referenced to the top or bottom
of page settings. Thus CV=@ is top line on screen and
CV=23 is bottom. The value of CV will be between T (top)
and B (bottom).
120 POKE 37,CV Move the cursor to the absolute position specified by CV
and CV is greater than or equal to T and less than or
equal to B. @ is the top most line and 23 is the last
line.
130 POKE 50,255 Set text mode output to be white characters on black
background (Normal mode).

140 POKE 50,127 Set text mode to flash outputted characters.

150 POKE 50,63 Set text mode output to be black characters on white
background. (Inverse mode.)

51

| Distributed under the Creative Commons License on page 4 Page 0059 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Special Controls and Features (Cont.)

BASIC Examples DESCRIPTION
160 X=USR(-936) Home cursor; i.e., move cursor to top-left most edge

of screen as defined by window settings (L,%,T,B), then
clear all characters inside window. Characters outside
defined window are not affected. This is same as @
(Escape E).

170 X=USR(-958) Clear inside of window from current cursor position to
bottom margin and left margin. Characters to the left
or above the cursor will not be affected. This is the
same as Fg (Escape F).

180 X=USR(-868) Clear current line from cursor to right margin. This
is the same as Ep (Escape E).

190 X=USR(-922) Issues a 1ine feed to the TV display.

200 X=USR(-912) Scrolls up text one line; i.e., moves each line of
text within the defined window up one positien. 01d
top line is lost; old second line becomes line one;
bottom line is now blank. Characters outside defined
window are not affected.

210 X=USR(-1233) Resets window to maximum and sets all text mode.
X=USR(-1233) is the same as POKE 32,0: POKE 33,39:
POKE 34,0: POKE 35,23: POKE-16303,0: POKE 36,0:
POKE 37,23.

220 X=PEEK(-16336) Toggle speaker once.

230 X=PEEK(-16384) Read keyboard; if x>127 than key was depressed and
X AND 127 is ASC II value of key depressed. This is
useful in long programs to have the computer check to
see if the user wants to interrupt with new data
without stopping program execution.

240 WPOKE(-16368,0) Reset keyboard strobe so that next character may be
Peyis =i read in.

250 X=PEEK(-16287) Read paddle #0 push button switch. [If X>127 then
paddle button is depressed.

260 X=PEEK(-16286) Same as above but paddle #1

270 X=PEEK(-16285) Paddle #2 pushbutton.

280 X=POKE-16296,1 Set Game /0 output #@ to TTL high (3.5 volts).
290 X=POKE-16295,0 Set Game I/0 output #0 to TTL Tow (0.3 volts).

300 X POKE-16294,1 Set Game I/0 output #1 to TTL high (3.5 volts).
310 X=POKE-16293,0 Set Game I/0 output #1 to FTL low (0.3 voits).

52

| Distributed under the Creative Commons License on page 4 Page 0060 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDICES

53

| Distributed under the Creative Commons License on page 4 Page 0061 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX A
Getting APPLESOFT Floating Point BASIC Up

Unlike APPLE integer BASIC, which is always "in" the computer's
permanent ROM memory, APPLESOFT BASIC must be loaded from cassette
tape into the computer each time you wish to use it (because it
resides in RAM, it is Tost when power is turned off). Since
APPLESOFT BASIC occupies approximately 10k bytes of memory, a com-
puter with 16k bytes or more memory is required to use APPLESOFT
BASIC.

APPLESOFT BASIC is entered into the computer just Tike any BASIC
program - simply type: LOAD

start the tape

depress the RETURN key

After about 1% minutes APPLESOFT will have loaded, and a ">" prompt
character followed by a cursor will be displayed.

Typing “RUN" as you always do to run a program will produce the
following message:

APPLE COMPUTER
EXTENDED PRECISION FLOATING POINT BASIC
INSTRUCTIONS WILL BE LOST AFTER ENTERING
FP BASIC
INSTRUCTIONS (Y/N) ?

Don't answer the question quite yet...APPLESOFT BASIC requires 10k bytes
of memory, which leaves 5k bytes free for your programs (in a 16k system).
When you load the APPLESOFT tape, however, there is an additional 5k byte
program which loads along with APPLESOFT BASIC. This program will (when
APPLESOFT BASIC is run for the first time after loading) provide instruc-
tion, a summary of commands, and allow you to choose between including
GRAPHIC commands or the commands LET and REM in the BASIC. This pre-
Timinary program will be automatically erased after it has been used,
Teaving the memory it previously occupied free for user programs.

S0, in answer to the question "INSTRUCTIONS (Y/N) ?" type Y or YES
and hit RETURN.

You will then be asked "SUMMARY OF COMMANDS (Y/N) 2" type Y or YES
as above.

The screen will now be filled with a partial list of the commands used
in APPLESOFT BASIC. Just hit the space bar to see more on the next
page. If you want to return to the beginning of this program (the
question INSTRUCTIONS (Y/N) ?) then just depress the "ESC" key.

54

| Distributed under the Creative Commons License on page 4 Page 0062 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

This is sometimes useful when you want to refer back to a previous
page of information.

After 12 pages of information, you will reach a page with information
about the prompt character. When you are familiar with the commands
used in APPLESOFT BASIC, you can answer NO to the question "SUMMARY
OF COMMANDS (Y/N) ?" and jump immediately to this page, bypassing all
the command information.

AN IMPORTANT NOTE: One of the functions of the prompt character,

besides PROMPTing you for input to the computer, is to identify at

a glance which language the computer is programmed to respond to at

that time. For instance, up till now you have seen two prompt characters:

%" for the MONITOR (when you hit RESET)

">" for APPLE BASIC (the normal integer BASIC)
and now we introduce a third:

* " for APPLESOFT floating point BASIC.

By simply looking at this prompt character, you can easily tell (if you
forget) which language the computer is in.

ANOTHER IMPORTANT NOTE: If you accidently hit RESET and are in the .
MONITOR (as shown by the "*" prompt character), you may be able to
return to APPLESOFT BASIC, with the BASIC and your program intact by
typing "@G" and depressing the "RETURN" key. If this does not work, you
will have to re-load APPLESOFT from cassette tape. Also, typing
Control-C or Control-B from the monitor will transfer you to APPLE
integer BASIC and erase APPLESOFT BASIC.

Next, you will reach the last page of questions and information in
this preliminary program. We could have gotten here immediately
from the first question INSTRUCTIONS (Y/N)? just by typing NO
(actually, just hitting RETURN also does the trick).

It reads: Option #1 - Graphic commands but no LET or REM commands.
or
Option #2 - LET & REM commands but no graphic commands.

Select Option 1 if you are going to try the examples in the first part
of this manual. Do it by answering the question "Which Option" by
typing a "1" and depressing the "RETURN" key. After a few seconds

the preliminary program will be erased. APPLE will then display copy-
rights information and ask for "Memory Size?" which most will just
depress the "RETURN" key and let APPLE set memory to maximum. APPLE
will now respond with "XXXXX Bytes Free" to inform you how much space
is available for your program and then will display a "2" prompt
character and a flashing cursor. APPLESOFT floating point BASIC is
now "on the air".

55

| Distributed under the Creative Commons License on page 4 Page 0063 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX B
PROGRAM EDITING WITH APPLESOFT BASIC

Most ordinary humans make mistakes occassionally.... es-
pecially when writing computer programs. To facilitate
correcting these "oversights" Apple has incorporated a
unique set of editing features into APPLESOFT BASIC.

To make use of them you will first need to familiarize
yourself with the functions of four special keys on the
Apple II keyboard. They are: (Escape), - (Right Arrow)
¢« (Left Arrow), and REPT (Repeat).

ESC

The escape key ("ESC") is the leftmost key in the second
row from the top. It is ALWAYS used with another key
(such as A, B, C or D keys) ie. using the escape key re-
quires you to push and release "ESC" then push and release
A etc....alternately.

This operation or sequence of the "ESC" key and another
key is written as subscript E (Ap) and is read "Escape-A".
There are four escape functions used for editing:

Ap - "escape-A" moves cursor to the right
BE - "escape-B" moves cursor to the left
Cp - "escape-C" moves cursor down

Dg - "escape-D" moves cursor up

Using the escape key and the desired key, the cursor may
be moved to any location on the screen without affecting
anything that is already displayed there.

RIGHT HAND ARROW (=)

The right arrow key () moves the cursor to the right.
It is the most time saving key on the keyboard because
it not only moves the cursor, but,

IT COPIES ALL CHARACTERS AND SYMBOLSuwaIT "MOVES
ACROSS", INTO APPLE II'S MEMORY, JUST AS IF YOU
HAD TYPED THEM IN FROM THE KEYBOARD YOURSELF:

LEFT HAND ARROW (&)

The left arrow key (=) moves the cursor to the left. It
removes all characters and symbols it "moves across" from
Apple II's memory but not from the TV display. It is

56

similar in use to the backspace key on standard typewriters.

| Distributed under the Creative Commons License on page 4

Page 0064 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

REPT

The "REPT" key is used with another character key on the
keyboard. It causes a character to be repeated as long
as the REPT key is held down.

Now you're ready to use these edit functions to save time
when making changes or corrections to your program. Here
are a few examples of how to use them.

Example 1 - Fixing typos

Suppose you've entered a program by typing it in, and when
you run it, the computer prints SYNTAX ERR and stops, pre-
senting you with the "3" prompt and the flashing cursor.

Enter the following program and "RUN" it. Note that "PRIMT"
and "PREGRAM" are mis-spelled on purpose. Below is how it
will Took on your TV display.

(o}
£
1)
"01
ﬂ
"Ll

IETT“T%IS
T £ -
l

Li i

L
]
i
.,“
ru»o
|—- e
e

Now type in "LIST" as below:
itiszt o o

108 -
‘1\\“\- CURSOR

To move the cursor up to the error in line 10, type escape-
D twice. The TV display will now Took like this:

hd

Now hit the right arrow &> 6 times to move the cursor on to
the "M" in "PRIMT". Remember, using the right arrow copies

57

| Distributed under the Creative Commons License on page 4

Page 0065 of 0083

Apple][AppleSoft BASIC Reference Manual -- 1977 --

DigiBarn Computer Museum -- Apple Computer, Inc.

all characters covered into Ap

bd

Now type the letter "N" to cor
then copy (using the '»' key a
the letter "E" in "PREGRAM",
like this:

= TIIT WUTLIT
FEINT i
GOTO 1§

=i

i

bd "

If you typed too many ~3''s by
too long, use the ‘&' key to b
Now, type the letter "0" to co
the &3' key to the end of line
spaces at the end of a program
down so make sure that you hit

the last character in a line.

1 ToT
P 3 SN S |

[y
1

ny e
d bl

XA
%)

58

r
iZ

ple's memory just as if

you were typing them in from the keyboard. The TV dis-
play will now look like this:
CURSOR
JLIST ,
g F’F:I “THIZ IS H FPREGEAR®
o8 GoTo 14 T

rect the spelling of 'PRIMT",
nd the "REPT" key) over to

The TV screen will now look

o ;ér;//’(’ CURSOR
Bran

o

W

“AF

T
i

sy
s]

holding down the "REPT" key
ackspace back to the "E".
rrect "PREGRAM" and copy using
1@. Note that unnecessary
Tine will slow your program
the "RETURN" key just after

Type "LIST" to see your corrected program:

)
S
)
T

Now "RUN" it (Use a control-C to stop the program):

| Distributed under the Creative Commons License on page 4

Page 0066 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

IRUH
THIS 15 A FR

THIS IS & F

THIS IS A FR

THIS IS A FR

THIZ IS A FR

THIS IS A PROGR

THIS IS A PROGRAM 7
THIS IS'A PROGRAM ~ ~ -
THIS 15 A PROGRAM c
THIS ISR PROGRAM -
THIS 15 A FROGRAM 0

!

)

BREAK IN 1@
-
-

Example 2 - Inserting text into an existing line

Suppose in the previous example, you wanted to insert a "TAB(X)"
command after the "PRINT" in line 1@#. Here's how. First "LIST"
the 1line to be changed:

S S TRET . ETLITH i = =T Tt =11 L
I8 FRINT FTHIS Iz & FEOGEAN

CURSOR

Type escape - D untij the cursor is on the line to be changed
(in this case only 8#e Dp #'required); then use the "' and
"REPT" keys to copy over to the first quotation mark. Your
TV display should now look like this:

CURSOR .
ILIST 18 - |
1@ PRINT [JTHIS 15 & PROGRAN®

bod

Now type another escape - D to move the cursor to the line
just above the current line and the display will look like:

JLIST 18 — CURSOR

far [l e mcnl & B
A FPROGHEAHM

| Distributed under the Creative Commons License on page 4

Page 0067 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Type in the message to be inserted which, in this case, is
"TAB(1@);". Your TV display should now Took Tike this:

CURSOR

Type an escape - C to move the cursor down one Tine so that
the display looks like this:

CURSOR

s e,

Now backspace back to the first quotation mark using(escape -
B (op—the—ted-key). The TV display will now look like this:

e Tl P e o 3
JLIST ig
s -
CiHpL1g g - Tl
;
18 FPRINT['THIS 15 A PROGRAN"

NG

From here, copy the rest of the line using the ' and "REPT"
keys until the display looks like this:

JILIET 15
TREC 1853 CURSOR
4 FREIN 'THIS IS A PROGRAN"Y4%

Depress the "RETURN" key and type "LIST" to get the following:

P -
ILIsT
-~ MmO THIT o~ el BTUTe To o DMl
18 FPREINT TRECIS;;"THIS IS B FRUOGERH
= CmRTO 0
T fad R Y & TSF

Remember, using the escape keys, one may copy and edit text
that is displayed anywhere on the TV display.

60

| Distributed under the Creative Commons License on page 4 Page 0068 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX C
ERROR MESSAGES

After an error occurs, BASIC returns to command level
as indicated by "3 " prompt character and a flashing
cursor. Variable values and the program text remain
intact, but the program can not be continued and all
GOSUB and FOR loop counters are set to 9.

When an error occurs in a direct statement, no line
number is printed.

Format of error messages:

Direct Statement ?XX ERR

Indirect Statement ?XX ERR IN YY
In both of the above examples, "XX" will be the error
code. The "YY" will be the line number where the error
occured for the indirect statement. Error messages for
indirect statements will be not outputted until a "RUN"
is executed.

The following are the possible error codes and their
meanings.

ERROR MESSAGE MEANING

CAN'T CONTINUE Attempt to continue a program
when none exists, an error
occured, or after a new line
was typed into the program.

DIVISION BY ZERO Dividing by zero is an error.

ILLEGAL DIRECT You cannot use an INPUT or DEFEN
statement as a direct command.

ILLEGAL QUANTITY The parameter passed to a math or
string function was out of range.
"TLLEGAL QUANTITY" errors can occur
due to:

a) a negative matrix subscript
(LET A (-1=0)

b) an unreasonably large matrix
subscript (>65535)

c¢) LOG-negative or zero argument

d) SOR-negative argument

61

| Distributed under the Creative Commons License on page 4

Page 0069 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

ERROR MESSAGES (cont.)

ERROR MESSAGE MEANING

ILLEGAL QUANTITY (cont) e) A4B with A negative
and B not an integer.

f) use of MID$, LEFTS,
RIGHT$, WAIT, PEEK,
POLE, TAB, SPC or ON..
GOTO with an improper
argument.

NEXT WITHOUT FOR The variable in a NEXT state-
ment corresponds to no pre-
viously executed FOR statement.

A READ statement was executed
but all of the DATA statements
in the program have already
been read. The program tried
to read too much data or in-
sufficient data was included in
the program.

QUT OF MEMORY Program too large, too many
variables, too many FOR loops,
too many GOSUB's,toocomplicated
an expression or any combination
of the above.

OVERFLOW The result of a calculation was
too large to be represented in
BASIC's number format. If an
underflow occurs, zero is given
as the result and execution
continues without any error
message being printed.

REDIM'D array After a matrix was dimensioned,
another dimension statement for
the same matrix was encountered.
This error often occurs if a
matrix has been given the default
dimension 10 because a statement
Tike A(I)=3 is encountered and
then later in the program a DIM
A(100) is found.

RETURN WITHOUT GOSUB A RETURN statement was encountered

without a previous GOSUB statement
being executed.

62

| Distributed under the Creative Commons License on page 4 Page 0070 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

ERROR MESSAGES (cont.)

ERROR MESSAGE

STRING TOO LONG

BAD SUBSCRIPT

SYNTAX ERROR

TYPE MISMATCH

UNDEF'D STATEMENT

UNDEF'D FUNCTION

error message.

63

The line which the error occurs on will be listed after the

MEANING

Attempt was made by use of the
concatenation operator to create
a string more than 255 characters
long.

An attempt was made to reference
a matrix element which is outside
the dimensions of the matrix.
This error can occur if the wrong
number of dimensions are used in
a matrix reference; for instance,
LET A(1,1,1,)=Z when A has been
dimensioned DIM A(2,2).

Missing parenthesis in an ex-

pression, illegal character in
a line, incorrect punctuation,
etc.

The left hand side of an assign-
ment statement was a numeric
variable and the right hand side
was a string, or vice versa; or a
function which expected a string
argument was given a numeric one
or vice versa.

An attempt was made to GOTO, GOSUB
or THEN to a statement which does
not exist.

Reference was made to a user
defined function which had never
been defined.

| Distributed under the Creative Commons License on page 4 Page 0071 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX D
SPACE HINTS

In order to make your program smaller and save space,
the following hints may be useful.

1) Use multiple statements per Tine. There is a
small amount of overhead (5bytes) associated with each
line in the program. Two of these five bytes contain
the Tine number of the line in binary. This means that
no matter how many digits you haye in your 1ine number
(minimum line number is 0, maximum is 65529), it takes
the same number of bytes. Putting as many statements
as possible on a line will cut down on the number of bytes
used by your program.

2) Use integer as opposed to real matrixes where
ever possible.

3) Delete all unnecessary spaces from your program.
For instance:
10 PRINT X, Y, Z
uses three more bytes than
10 PRINTX, Y, Z
Note: A1l spaces between the 1ine number and
the first nonblank character are ignored.

4) Delete all REM statements. Each REM statement
uses at least one byte plus the number of bytes in the
common text. For instance, the statement 130 REM THIS
IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X=X+Y: REM UPDATE SUM, the
REM Eées 14 bytes of memory including the colon before
the REM.

5) Use variables instead of constants. Suppose
you use the constant 3.14159 ten times in your program.
[f you insert a statement
10 P=3.14159
in the program, and use P instead of 3.14159 each time it
is needed, you will save 40 bytes. This will also result
in a speed improvement.

6) A program need not end with an END; so, an END
statement at the end of a program may be deleted.

7) Reuse the same variables. If you have a variable
T which is used to hold a temporary result in one part of
the program and you need a temporary variable later in
your program, use it again. Of, if you are asking the

64

| Distributed under the Creative Commons License on page 4 Page 0072 of 0083

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

terminal user to give a YES or NO answer to two different
questions at two different times during the execution of
the program, use the same temporary variable A$ to store
the reply.

8) Use GOSUB's to execute sections of program
statements that perform identical actions.

9) Use the zero elements of matrices; for instance,
A(0), B(0,X).

STORAGE ALLOCATION INFORMATION

Simple real or integer (non-matrix) numeric
variables Tike V use 7 bytes; 2 for the variable name,
and 5 for the value. Simple non-matrix string variables
also use 6 bytes; 2 for the variable name, 2 for the
length, and 2 for a pointer.

Real matrix variables use a minimum of 13 bytes.
Two bytes are used for the variable name, two for the
size of the matrix, two for the number of dimensions
and two for each dimension along with five bytes for
each of the matrix elements. Integer (AB% (X,Y...))
matrix variables use only 2 bytes for each matrix
element.

String variables also use one byte of string space
for each character in the string. This is true whether
the string variable is a simple string variable like AS$,
or an element of a string matrix such as Q1$(5,2).

When a new function is defined by a DEF statement,
6 bytes are used to store the definition.

Reserved words such as FOR, GOTO or NOT, and the
names or the intrinsic functions such as C0S, INT and
STR$ take up only one byte of program storage. All
other characters in programs use one byte of program
storage each.

When a program is being executed, space is dynamically
allocated on the stack as follows:

1) Each active FOR...NEXT loop uses 16 bytes.

2) Each active GOSUB (one that has not returned
yet) uses 6 bytes.

3) Each parenthesis encountered in an expression

uses 4 bytes and each temporary result calculated
in an expression uses 12 bytes.

65

| Distributed under the Creative Commons License on page 4 Page 0073 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX E

Speeding Up Your Program

The hints below should improve the execution time
of your BASIC program. Note that some of these hints
are the same as those used to decrease the space used
by your programs. This means that in many cases you
can increase the efficiency of both the speed and size
of your programs at the same time.

1) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT
BY A FACTOR OF 1g.

Use variables instead of constants. It takes
more time to convert a constant to its floating point
representation that it does to fetch the value of a
simple or matrix variable. This is especially im-
portant within FOR...NEXT loops or other code that is
executed repeatedly.

2) Variables which are encountered first during
the execution of a BASIC program are allocated at the
start of the variable table. This means that a state-
ment such as 5 A=@:B=A:C=A, will place A first,
B second, and C third in the symbol table (assuming
line 5 is the first statement executed in the program).
Later in the program, when BASIC finds a reference to
the variable A, it will search only one entry in the
symbol table to find A, two entries to find B and three
entries to find C, etc.

3) NEXT statements without the index variable.
NEXT is somewhat faster than NEXT I because no check
is made to see if the variable specified in the NEXT
is the same as the variable in the most recent FOR
statement.

4) Delete all unnecessary spaces and REM's from
the program. This may cause a small decrease in
execution time because BASIC would otherwise have to
ignore or skip over spaces and REM statements.

5) During program execution, when APPLESOFT
encounters a new line reference such as "GO TO 1000"
it scans the entire user program starting at the
Towest line until it finds the referenced 1ine number
(1000 in this exampie). Therefore frequently re-
ferenced lines should be placed as early in the program
as possible. For example:

66

| Distributed under the Creative Commons License on page 4

Page 0074 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

1000...

1100...
1200....
2000....

0 GO TO 1000

.1099

.1199

1299

Skip over subroutines, etc.

Frequently referenced statements
such as DATA, GOSUB's, etc.

Define most fequently used variables
and constants as varijables.

User defined subroutines "DEF FN".
Dimension matrices

Main program begins.

67

| Distributed under the Creative Commons License on page 4 Page 0075 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.
APPENDIX F
DERIVED FUNCTIONS
The following functions, while not intrinsic to APPLESOFT
BASIC, can be calculated using the existing BASIC functions and
can be easily implimented by using "DEF FN" function.
FUNCTION FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS
SECANT SEC(X) = 1/C0S(X)
COSECANT csSc(Xx) = 1/SIN(X)
CONTANGENT COT(X) = 1/TAN(X)
INVERSE SINE ARCSIN(X) = ATN(X/SOR(—X*X+1)3
INVERSE COSINE ARCCOS(X) = -ATN(X/SQR(-X*X+1))+1.5708
INVERSE SECANT ARCSEC(X) = ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708
INVERSE COSECANT ARCCSC(X)= ATN(l/SQR(X*X-l))+(SGN(X)-1)*1.5708
INVERSE COTANGENT ARCCOT(X)= -ATN(X)+1.5708
HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2
HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(-X))/2
HYPERBOLIC TANGENT TANH(X) = -EXP(-X)/(EXP(X)+EXP(-X))*2+1
HYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXP(-X))
HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)-EXP(-X))
HYPERBOLIC COTANGENT COTH(X) =EXP(-X)/(EXP(X)-EXP(-X))*2+1
INVERSE HYPERBOLIC
SINE ARGSINH(X) = LOG(X+SQR(X*X+1))
INVERSE HYPERBOLIC
COSINE ARGCOSH(X) = LOG(X+SQR(X*X-1))
INVERSE HYPERBOLIC
TANGENT ARGTANH(X) = LOG((1+X)/(1-X))/2
INVERSE HYPERBOLIC
SECANT ARGSECH(X) = LOG((SQR(-X*X+1)+1)/X)
INVERSE HYPERBOLIC
COSECANT ARGCSCH(X) = LOG((SGN(X)*SQR(X*X+1)+1)/X
INVERSE HYPERBOLIC
COTANGENT ARGCOTH(X) = LOG((X+1)/(X-1))/2
68
| Distributed under the Creative Commons License on page 4

Page 0076 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX G

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR APPLESOFT

Though implementations of BASIC on different computers are
in many ways similar, there are some incompatibilities which
you should watch for if you are planning to convert some BASIC
programs that were not written for the Apple II.

1) Matrix subscripts. Some BASIC's use " [" and " J "
Eo)denote matrix subscripts. APPLESOFT BASIC uses " (" and

2) Strings. A number of BASIC's force you to dimension
(declare) the length of strings before you use them. You should
remove all dimension statements of this type from the program.

In some of these BASIC's, a declaration of the form DIM A$(I,J)
declares a string matrix of J elements each of which has a iength I.
Convert DIM statements of this type to equivalent ones in APPLESOFT
BASIC: DIM A$(J).

APPLESOFT BASIC uses " + " for string concatenation, not " , "
OY. n & ll.

APPLESOFT BASIC uses LEFT$, RIGHT$ and MID$ to take substrings of
strings. Other BASIC's use A$(I) to access the Ith character of
the string A$, and A$(I,J) to take a substring of A$ from character
position I to character position J. Convert as follows:

oL NEW
AS(1) MIDS(AS,1,1)
A$(1,J) MID$(AS,I,J-1+1)

This assumes that the reference to a substring of A$ is in an
expression or is on the right side of an assignment. If the
reference to A$ is on the Teft hand side of an assignment, and
X$ is the string expression used to replace characters in A$,
convert as follows:

oLd NEW
A$(I)=X$. A$=LEFT$(A$,I-1)+X$+MID$(AS,1+1)
A$(1,d)=X$ A$=LEFT$(A$,I-1)+X$+MID$ (AS,d+1)

3) Multiple assignments. Some BASIC's allow statements
of the form: 500 LET B=C=0. This statement would set the
variables B & C to zero.

In APPLESOFT BASIC this has an entirely different effect. A1l the

" ='s " to the right of the first one would be interpreted as logical
comparison operators. This would set the variable B to -1 if C

69

| Distributed under the Creative Commons License on page 4

Page 0077 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum --

Apple Computer, Inc.

equaled 0. If C did not equal 0, B would be set to 0. The
easiest way to convert statements like this one is to rewrite
them as follows:

500 C=0:B=C.
4) Some BASIC's use " / " instead of " : " to delimit

multiple statements per line. Change the " "'s to " : "'s
the program.

in

5) Programs which use the MAT functions available in some

BASIC's will have to be re-written using FOR...NEXT loops to
perform the appropriate operations.

70

| Distributed under the Creative Commons License on page 4

Page 0078 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX H
ASCIT CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
) NUL 32 SPACE 64 @
1 SOH 33 ! 65 A
2 STX 34 " 66 B
3 ETX 35 # 67 c
4 EOT 36 $ 68 D
5 ENQ 37 % 69 E
6 ACK 38 & 7R F
7 BEL 39 71 G
8 BS 49 (72 H
9 HT 41) 73 I

19 LF 42 * 74 J
11 VT 43 + 75 K
12 FF 44, % L
13 CR 45 77 M
14 SO 46 . 78 N
15 SI 47 / 79 0
16 DLE 48 i 8 P
17 DC1 49 1 81 Q
18 DC2 50 2 82 R
19 DC3 51 3 83 S
20 DC4 52 4 84 T
21 NAK 53 5 85 u
22 SYN 54 6 86 v
23 ETB 55 7 87 W
24 CAN 56 8 88 X
25 EM 57 9 89 y
26 SuB 58 : 9g Z
27 ESCAPE 59 ; 91

28 FS 60 92

29 GS 61 = 93

3¢ RS 62 94

31 us 63 ? 95

LF=LINE FEED CR=CARRIAGE RETURN

CHR$ is a sfring function which returns a one character string which
contains the ASCII equivalent of the argument, according to the conversion

table above. ASC takes the first character of a string and converts it to
its ASCII decimal.

One of the most common uses of CHR$ is to send a special character
to the user's terminal. The most often used of these characters is the
BELL (ASCII 7). Printing this character will cause a "beep". This may be
used as a preface to an error message, as a novelty, or just to wake up the
user if he has fallen asleep. (Example: PRINT CHR$(7);)

71

| Distributed under the Creative Commons License on page 4 Page 0079 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

APPENDIX I
MEMORY MAP - APPLE II with
APPLESOFT BASIC LOADED

MEMORY RANGE* DESCRIPTION

P.1FF Program work space; not available to user.

200 .2FF Keyboard character buffer.

308.3FF Available to user for short machine language
programs.

app.7FF Screen display area for text or color graphics.

800.29FF APPLESOFT BASIC complier.

2AP@. XXX User program and variables where XXX is

maximum available RAM memory to be used by
APPLESOFT. This is either total system RAM
memory or less if the user is reserving part of
high memory for machine language routines.

CPoP.CFFF Hardware 1/0 addresses.
DOPP.PFFF Future ROM expansion
EPPD.F7FF Apple Integer BASIC
F8¢¢;FFFF Apple System Monitor

* Numbers are in hexidecimal notation.

72

| Distributed under the Creative Commons License on page 4 Page 0080 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Appendix J
Literature References

Ahl, David (Editor), The Best of Creative Computing Vol I.
Morristown, NJ: Creative Computing Press, 1977.

, The Best Of Creative Computing Vol II.
Morristown, NJ: Creative Computing Press, 1977.

Albrecht, Robert, My Computer Likes Me when I speak in BASIC.
Menlo Park, CA: Dymax, 1972.

, Leroy Finkel, -and Jerry Brown, BASIC.
New York: John Wiley & Sons, Inc., 1973.

Aribib, Michael A., Brains, Machines, and Mathematics.
New York: McGraw-Hiil, 1977.

Bergman, Samuel and Steven Bruckner, Introduction to Computers
and Computer Programming.
Reading, Mass: Addison-Wesley Publishing Co., 1972.

Brand, Stewart, II Cybernetic Frontiers.
New York, Random House, 1975.

Brown, Jerald, R., Instant Basic.
Menlo Park, CA: Dymax, 1977.

Brown, R. W., Basic Software Library.
Crofton, Md: Scientific Research Inst., 1976.

Clarke, Sheila, "The Remarkable Apple Computer"
Kilobaud, 1977, 2:34,38.

Coan, James, S., Basic Basic.
Rochelle Park, NJ: Hayden Book Company, Inc., 1970.

, Advanced Basic.
RocheTle Park, NJ: Hayden Book Company, Inc., 1977.

Crowley, Thomas, H., Understanding Computers.
New York: McGraw-Hill, 1977.

73

| Distributed under the Creative Commons License on page 4 Page 0081 of 0083)

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Feldman, Phil, and Tom Rugg, "Hangmath." Kilobaud.
1977, 4:112-115.

Fenichel, Robert, R., and Joseph Weizenbaum (Introductions),
Readings from Scientific American: Computers and Computation.
San Francisco: W. H. Freeman and Company, 1971.

Gruenberger, Fred, and George Jaffray, Problems For Computer Solution.
New York: John Wiley & Sons, Inc., 1965.

Hellerman, H., Digital Computer Systems Principles, 2nd Ed.
New York: McGraw-Hill, 1973.

Jordan, P., Condensed Computer Encyclopedia.
New York: McGraw-Hill, 1969.

Kemeny, John, G. and Thomas E. Kurtz, Basic Programming.
New York: John Wiley & Sons, Inc., 1971.

Koberg, Don, and Jim Bagnall, The Universal Traveler.
Los Altos, CA: Eillism Kaufmann, Inc., 1976.

Kohl, Herbert, R., Math, Writing, & Games.
New York: Vintage Books, 1974.

La Fave, L., G. Milbrandt, and D. Garth, Problem Solving:
The Computer Approach.
New York: McGraw-Hill, 1973.

Ledgard, Henry, F., Programming Proverbs.
Rochelle Park, NJ: Hayden Book Company, Inc., 1975.

Lehman, John A., "A Small Business Accounting System."
Byte, 1976, 10:8-12

McCabe, Dwight, PCC's Reference Book.
Menlo Park, CA: People's Computer Company, 1977.

74

| Distributed under the Creative Commons License on page 4 Page 0082 of 0083

Apple][AppleSoft BASIC Reference Manual -- 1977 -- DigiBarn Computer Museum -- Apple Computer, Inc.

Nilsson, N., Artificial Intelligence.
New York: McGraw-Hill, 1971.

Poole, Lon, and Mary Borchers, Some Common Basic Programs.
Berkeley: Adam Osborne & Associates, Inc., 1977.

Rugg, Tom, and Phil Feldman, "A Useful Loan Payment Program."
Kilobaud, 1977, 2:68-69.

» "BASIC Timing Comparisons."
Kilobaud, 1977, 6:66-70.

Sharpe, William, F., and Nancy L. Jacob, BASIC.
New York: The Free Press, 1971.

Smith, Robert, E., Discovering Basic.
Rochelle Park, NJ: Hayden Book Company, Inc., 1970.

Tausworthe, Robert C., Standarized Development of Computer Software.
Englewood Cliffs, NJ: Prentice-Hall, 1977

Technica Education Corporation, Teach Yourself Basic, Vol. I.
Salt Lake City, 1970.

, Teach Yourself Basic, Vol. II.
Salt Lake City, 19/0.

Warren, Jim, C., (editor), The First West Coast Computer Faire
Conference Proceedings.
Palo Alto, CA: Computer Faire, 1977.

Warren, Carl Denver, "Simplified Billing System"
Kilobaud, 1977, 6:94-95.

White, James, Your Home Computer.
Menlo Park, CA: Dymax, 1977.

Wilkinson, Lee, "Cure Those End-of-the Month Blues."
Kilobaud, 1977, 2:34-35.

Wozniak, Stephen, "The Apple-II."
Byte, 1977, 2(5): 34-44.

75

| Distributed under the Creative Commons License on page 4 Page 0083 of 0083)

